
Java COM

From the Editor
by Sean Rhody pg. 5

Macromedia Focus
by Kevin Lynch pg. 7

Industry Watch
by Alan Williamson pg. 70

VisualAge Repository
by Brady Flowers pg. 82

JDJ News
pg. 98

Product Review
EspressChart

by Don Walker pg. 94

Java Jobs
by Bill Baloglu &

Billy Palmieri pg. 104

Guest Editorial
by Ajit Sagar pg. 110

RETAILERS PLEASE DISPLAY
UNTIL APRIL 30, 2001

$4.99US $6.99CAN

February 2001 Volume:6 Issue:2

The World’s Leading Java Resource

TM

Feature: A Practical Solution for the Alexis Grandemange

Deployment of JSP Develop a solution that’s portable PART 2 22

EJB/CORBA: EJB, CORBA, and COM Sirl Davis
Maintaining interoperability is essential 30

EJB Home: Modeling Enterprise Java Vaughn Vernon

Components with UML Finding common ground 38

Java & HTTP: Journeyman’s HTTP Driver Marc Connolly
A portable and effective means for generating HTTP traffic 46

CORBA Corner: Integrating CORBA and J2EE Paul Moxon
Integration servers help fill the gap in the J2EE–CORBA combo 54

Feature: Business Rule Representation Ken Molay

of Java Objects Representing data in automated systems 62

Feature: Jlink: Cybelink’s Framework for Mani Malarvannan

Creating Reusable Enterprise Components
Exploring Servlet/JavaServer Pages technology 74

Feature: Using Motorola’s Java Card Andrew Webb

to Digitally Sign a Message
Integrating Java, smart cards, & cryptography 86

SYS-CON ANNOUNCES THE LARGEST EAST COAST
P.73

applet
"data"

"data"

"signature"

"signature"

Java Workstation
Program

Java Card
OS

Java Card
AppletJCE Cryptographic

Provider
OCF Card Service

Provider

EVERY
I S S U E E V E R
PUBLISHED ON

ONE CD!
page 77

JAVA EVENT

SEAN RHODY, EDITOR-IN-CHIEF

sean@sys-con.com
AUTHOR BIO

Sean Rhody is editor-in-chief of Java Developer’s Journal. He is also a respected industry expert and
a consultant with a leading Internet service company.

Impersonalization

5FEBRUARY 2001

Java COM

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, GEORGE PAOLINI, KIM POLESE,
SEAN RHODY, RICK ROSS, AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
MANAGING EDITOR: CHERYL VAN SISE

EDITOR: NANCY VALENTINE
ASSOCIATE EDITOR: BETTY LETIZIA
ASSOCIATE EDITOR: JAMIE MATUSOW
EDITORIAL INTERN: SUZANNE AUGELLO

EDITORIAL CONSULTANT: SCOTT DAVISON
TECHNICAL EDITOR: BAHADIR KARUV

PRODUCT REVIEW EDITOR: ED ZEBROWSKI
INDUSTRY NEWS EDITOR: ALAN WILLIAMSON

E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
BILL BALOGLU, MARC CONNOLLY, SIRL DAVIS, BRADY FLOWERS,

ALEXIS GRANDEMANGE, SAMUDRA GUPTA,
KEVIN LYNCH, MANI MALARVANNAN, KEN MOLAY,

PAUL MOXON, BILLY PALMIERI, SEAN RHODY, AJIT SAGAR, VAUGHN VERNON,
DON WALKER, ANDREW WEBB, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE OF $49 PLUS $60 FOR AIRMAIL DELIVERY

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT,AND CEO: FUAT A. KIRCAALI
VP, PRODUCTION: JIM MORGAN

SENIOR VP, SALES & MARKETING: CARMEN GONZALEZ
VP, SALES & MARKETING: MILES SILVERMAN

ADVERTISING ACCOUNT EXECUTIVE: RONALD J. PERRETTI
ASSISTANT CONTROLLER: JUDITH CALNAN
CREDIT & COLLECTIONS: CYNTHIA OBIDZINSKI

ACCOUNTS PAYABLE: JOAN LAROSE
ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA

MEGAN RING
ASSOCIATE SALES MANAGERS: CARRIE GEBERT

CHRISTINE RUSSELL
SALES ASSISTANT: ALISA CATILANO

VICE PRESIDENT, CIRCULATION: AGNES VANEK
CIRCULATION MANAGER: CHERIE JOHNSON

ASSOCIATE ART DIRECTOR: DINA ROMANO
ASSISTANT ART DIRECTORS: CATHRYN BURAK

LOUIS F. CUFFARI
GRAPHIC DESIGNER: ABRAHAM ADDO

GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN
WEBMASTER: ROBERT DIAMOND

WEB DESIGNERS: GINA ALAYYAN
STEPHEN KILMURRAY

WEB DESIGNER INTERN: PURVA DAVE
SYS-CON EVENTS MANAGER: ANTHONY D. SPITZER

E D I T O R I A L O F F I C E S
SYS-CON MEDIA, INC., 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645

TELEPHONE: 201 802-3000 FAX: 201 782-9600
SUBSCRIBE@SYS-CON.COM

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)
is published monthly (12 times a year) for $49.00 by

SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T
Copyright © 2001 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

730 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

Y
ou see personalization and targeted marketing all over the Web. Almost every commerce
site offers you the opportunity to set up your own favorites, rearrange their home page to
suit your tastes, and be remembered when you come to their site. Every site I visit allows
me to set up my own personalized content. I use MSN for some things, like tracking my

stocks and local weather. I use CNN for news. I use Amazon for buying things and eBay for
trading. And everyone lets me do it my way.

As a system architect who concentrates on commerce sites, I spend a lot of time figuring
out how to do the very same things. Or more appropriately how to use existing products to do
what the client wants to do.

What they really want is to get to know you better. They want to know who you are, your
age group, your sex is, how much money you make, where you live, and your shoe size. Not all
of them want all that information, of course, but you get the idea.

To gather this information, different sites try one of two approaches; both have limitations.
The first approach is to ask the person for specific information. Unfortunately, people lie. Half
of the programmers I’ve worked with in the industry have listed themselves as CIO at one time
or another on a magazine form in order to get a free subscription (Note: That won’t work with
JDJ). And how many people really check off the lowest income bracket in the section that asks
how much money you make? Not many. When people aren’t happy with providing such infor-
mation, they either don’t do it or they lie.

The other method that sites try is to implicitly derive information about you. Every time
you do a search or buy an item, you may unintentionally be giving information about your-
self. Unfortunately, this is far from foolproof too. I have a friend who always complains about
a particular shopping site. He’s a single guy, but he bought a children’s book for a friend’s
daughter once and ever since he receives recommendations for children’s books every time he
visits the site. He’s in their “has children” category.

There’s nothing inherently wrong with sites using either approach. Commerce sites are in
business to make money, and the more they get to know their customers, the better they can
serve them. Unfortunately, the products that are available to help target their marketing
efforts have a dark side – they require people.

As far as I know, no one has ever developed a computer system that can make a judgment
call. Computers are great tools for evaluating conditions and generating results, but they can’t
tell that my friend doesn’t have kids. The biggest mistake a commerce site can make is to think
that a package can reduce the number of people they need in marketing.

It’s obvious if you think about it for a minute. The more finely tuned you want your mar-
keting and sales to be, the greater the number of categories. Computers can’t create the cate-
gories any more than they can determine the conditions under which a customer belongs to
one of them. A human being has to do it and input it into the system. People also have to cre-
ate the business rules for the various special offers. They need to decide that a good cross-sell
for children’s books might be children’s software, and whether a book that appeals to middle-
aged women will also be attractive to younger men.

That’s the key problem with personalization – it requires people. There’s no getting around
it. So remember that the next time you buy a computer book online and it suggests a Grateful
Dead album to go with it. Somebody had to decide they go together.

F R O M T H E E D I T O R

7FEBRUARY 2001

Java COM

Macromedia and Java:
Serving the Best User Experience

AUTHOR BIO
Kevin Lynch is president of Macromedia Products. He joined Macromedia in 1996 and has been instrumental in forming its Web strategy. As
president of products, Kevin is responsible for developing Macromedia’s award-winning family of software and solutions.

pr@macromedia.com

WRITTEN BY KEVIN LYNCH

M
acromedia’s mission is to improve the
user experience on the Web. While it’s
best known for its Web authoring and
media playback solutions, it’s also com-

mitted to the viability and importance of Java
as a platform for servers and has invested heav-
ily in Java technology for two of its products,
Dreamweaver UltraDev and Generator. Macro-
media feels that the integration of authoring,
playback, and server capabilities is key to cre-
ating the best user experience.

Dreamweaver UltraDev is the first Web
development solution to enable the visual
authoring of dynamic applications using
JavaServer Pages. Generator, a server-side solu-
tion for delivering dynamic visual content, is
built on, and can be extended, using Java.

UltraDev builds on the core architecture of
Dreamweaver and adds intuitive application
development features for Java developers. The
product was created to be sensitive to the needs
of developers. It not only protects and preserves
the integrity of your application code, but can
also be taught to write code the way you prefer.
For most developers the underlying code is as
important as the visual impact the site has on
visitors. UltraDev enables developers to con-
centrate on delivering a great user experience
by easily connecting back-end code to front-
end design. It lets JSP developers take full
advantage of JavaBeans authored by other team
members, enabling them to tweak the final
design without breaking the underlying code.

The program itself has resources to make
Java developers even more productive. Ultra-
Dev provides context-sensitive JSP code refer-
ence materials within the product through a
partnership with Wrox Press and its Profession-
al JSP book. Developers can, for example, high-

light an object in their JSP code, then click a
button. The reference material for that object
will open up in the code reference panel.
Developers can also extend the functionality of
their JSP pages by creating reusable JSP scripts
with the product’s server behavior builder,
teaching UltraDev to code the way they do.

The JSP reference materials, as well as many
JSP scripts created or modified with UltraDev,
are available on the Macromedia Exchange for
Dreamweaver UltraDev, a community Web site
that enables developers to extend the function-
ality of their product through extensions writ-
ten by developers and other third parties. Since
its introduction in April, the Macromedia
Exchange has enabled more than 350 available
extensions to be downloaded more than
2,000,000 times by Web professionals.

Generator is an enterprise server solution
for producing, delivering, and personalizing
real-time visual Web site graphics. It’s used by
leading e-businesses such as Forbes.com, Com-
paq, Ford.com, OpinionLab, ru4, and Hall-
mark.com. These companies use Generator to
separate design from content to deliver visually
rich information that can be easily updated.

Macromedia Flash is the authoring envi-
ronment for building Generator templates. The
Flash Player is installed on 96% of Web desk-
tops; developers can deploy Flash content and
be assured that the largest installed base of any
Web technology is able to experience it instant-
ly. Through a wide variety of Generator objects,
developers can choose the perfect visual dis-
play of information for their users. Data can be
presented in scrolling lists, charts, graphics,
tables, and a variety of graphic formats. The
Generator server allows developers to quickly
and reliably process, composite, and build Web

–continued on page 36

M A C R O M E D I A F O C U S

Java COM

8 FEBRUARY 2001

M A C R O M E D I A F O C U S 1 O F 3

How many times have we pulled out our hair trying to find a prop-

er way to deploy high-end graphics and animation over the Web? The answer

is perhaps a bit embarrassing. In DHTML concepts, with the help of JavaScript

and layered components, we could render interactivity with graphics and pro-

duce some animation effects, but those were far from what we desired and

what existing multimedia packages could offer for PC-based games and ani-

mation programs. By the time Java came into the picture it offered graphics-

handling features, which perhaps put a ray of hope into the developer’s world.

Despite the fact that Java could handle graphics, it was to a limited degree and

had inherent problems with graphics rendering, such as flickering, and fre-

quent repaint problems. It was (should I say is?) a head-breaking task to write

extra code to avoid those problems. Moreover, in a browser environment Java

applets took a fairly long time to download and display heavy graphics, calling

into question their potential as a solution.

Then Macromedia came up with award-winning products such as
Flash, and developers could at last find a real solution to the problem.
The Macromedia product families used vector-based graphics and
framed animation and successfully produced animation in a com-
pressed format called Shockwave, which had considerably smaller files
and took less time to download into the client browser. So with all their
rich features, Macromedia products immediately became the most pop-
ular way to present graphics and animation over Internet browsers.

Director:The Choice
Macromedia Director belongs to a similar line of products and is the

tool of choice for legions of Web and multimedia developers. With Direc-
tor we can create movies for Web sites, kiosks, and presentations. Movies
can be as small and simple as an animated logo or as complex as an
online chat room or game. Director movies can include a variety of
media, such as sound, text, graphics, animation, and digital video. A
Director movie can link to external media or be one of a series of movies
that refer to one another.

We can view Director movies in one of three ways:
1. In the Shockwave movie format, which plays in Shockwave-enabled

Web browsers
2. In a projector, which plays on your user’s computer as a stand-alone

application
3. In the form of a Java applet

Even though Director movies and Shockwave animation became
popular and efficient ways to deploy graphics and animation over the
Web, cross-platform compatibility was restricted to Windows and Mac-
intosh environments. Director needed a way in which browsers could
display movies with the help of a plug-in.

Director then offered cross-platform compatibility through its inter-
nal conversion engine, called Xtra, that transformed Director movies
into Java applets, although Java applets aren’t yet as smooth as their
Shockwave equivalents. They work, however, and platform indepen-
dence was achieved, making it useful for those with something other
than Windows or Macintosh. The quality of graphics and the animation
in the applets were dependent on the size and resolution of the images
used to render the movie.

Everything is apparently set and done for a platform-independent,
high-end graphics and animation deployment framework. But human
beings are never satisfied, and we’re still frustrated. The possibility of
transforming Director movies to Java applets tempted us to apply the
same rich functionality of graphics and animation outside the domain of
the browser and, more important, in a platform-independent manner.
Unfortunately, Macromedia didn’t offer a ready-made, one-shot solution
for this through Director. They offered projectors that are .exe files to run
the movies as a stand-alone, but they’re not platform independent.

In reality it’s not too difficult to work out a solution to the problem. In
fact, the bottom line is that we have to find a mechanism through which
we can run the Director movie applets, loading them into a container
such as Java Frame or a Java Window. Interestingly, Director allows us to
produce source code of the movie applet along with a few other helper
.class files to run it. We can manipulate the applet source file depending
on our need and even embed our own objects that may in turn be
responsible for activities such as database access, complex networking,
or even RMI. In the end what we have is a powerful mechanism to build
a truly platform-independent graphics and animation framework.

Creating the First Applet
Creating the applet from a Director movie is a trivial task. Any basic

Director movie can be saved as a Java applet by going to the “File” menu,
then choosing the “Save as Java” option. If this option isn’t visible, down-
load the “Save as Java” Xtra from the Macromedia site and install it on
your machine. The options are to save it as compiled Java or as Java
source code. If we choose to save it as a compiled Java source, then

Director produces all the required classes to run the movie as an applet
and a .djr file of the movie that’s loaded by the applet, as well as an .html
file that can be loaded in a browser or applet-viewer utility to see it run-
ning.

When we want to customize the applet on our own, we must save the
movie by selecting the option “Save as Source.” Although things seem to
be straightforward (indeed they are), it’s unwise to assume at an early
stage that everything within a Director movie can be converted to an
applet. In fact, there are limitations (we’ll discuss them in due course).
But to be optimistic, we can reasonably say that a Director movie, with
simpler event handling and animation features, can more or less be con-
verted to an applet. Before covering the applet issues, it’s worth dis-
cussing Director terminology and looking into Lingo, the scripting lan-
guage of Director and the basic architecture of the conversion of Direc-
tor movies into Java applets.

Some Useful Director Terminology
• Stage: The visible portion of the movie in which media elements

appear.
• Cast member: The prepared form of any media element to be used in

the Director movie. Any media elements we use have to be present in
the cast window.

• Sprite: An object that controls when, where, and how cast members
appear in a movie. Multiple sprites can use the same cast member. It’s
also possible to switch the cast member assigned to a sprite as the
movie plays.

• Behavior: A prewritten Lingo script we use to provide interactivity
and add interesting effects to a movie.

Introduction to Lingo
Lingo is Director’s scripting language and a 4GL language with a lot

of power. It offers:
• Event-handling capability
• Data parsing and manipulation ability
• Audio and video handling features
• Database interaction
• Some networking
• XML support

Everything we draw on a Director movie stage becomes a sprite, and
the object of the movie animation is to control these sprites. For exam-
ple, suppose we draw a button (Sprite1) on the stage, and by clicking it
we want to move another Sprite, a ball (Sprite 2), to point 100,100. The
equivalent expression in Lingo would be:

As mentioned, the Director movie is a kind of framed animation, and
each sprite on the stage is assigned several behaviors. We can control
these behaviors with the help of Lingo and, loosely speaking, that’s the
key to Director movie animation.

It’s possible to write two kinds of scripts with Lingo. A frame script
controls the behavior of the movie when it reaches a particular frame. A

9FEBRUARY 2001

Java COM

End mouseDown End of event

 The sprite, to which the script is attached

 On mouseDown me Event handling

Set the loc of Sprite 2 to point (100,100) Action in response to the event

Java COM

10 FEBRUARY 2001

behavior script controls the sprite’s behavior, such as
dancing and movement. By attaching custom scripts to
the sprites and cast members, we can achieve a high
level of framed animation. It’s recommended that the
developer consult a thorough tutorial on Lingo before
developing complicated movies in Director.

How the Movie Works as an Applet
The basic architecture of how the applet reproduces

the movie can be summarized in the following manner.
Every running applet has exactly one instance of movie-

Name.class, which is the first object created when the applet
runs. This object reads the media file, creates the score and
cast data structures, then begins to play the movie. According
to the movie’s tempo (the number of frames covered in a sec-
ond), this object periodically advances the frame counter, dis-
patches frame events to active sprites and their behaviors,
and redraws the stage. As the applet receives mouse and key
events, this object dispatches the events to movie, sprite, and
cast member scripts. The DirectorMovie class’s public API
supports Lingo commands that manipulate the entire movie
and access to sprite and cast member objects.

Standard Java Classes
Director’s “Save as Java” Xtra can minimize the player

to reduce the size of the applet. If Xtra doesn’t minimize
the player, it contains standard player classes. A mini-
mized player contains only those classes the converted
movie requires. The included classes contain the code
only for the features the applet uses.

Core Classes
Following are the key classes for the Director movies

running as applets. These classes represent a movie’s basic structure. All
classes aren’t always required to run the movie applets. If the movie
doesn’t use any of the features available in the Lingo value or helper
classes, they can be omitted and the minimized player would contain
only the core classes. Each class provides an API through which we con-
trol the behavior of the objects of the corresponding classes.

DirectorMovie (extends Applet)
Contains all data and functions that pertain to the overall movie,

such as:
• The score
• The cast, which is a list of objects of the Member class and can repre-

sent all the sprites taking part in the movie
• Movie properties, such as the frame counter, list of active sprite

objects and Lingo commands for common features, such as network
operations, mouse and key interactions, and movie control

• Event dispatching
• Interacting with the browser (via overridden applet methods)
• Handling media files

DirectorMovie is an abstract class. The class movieName derives
from the DirectorMovie class, where movieName represents the movie’s
final name. For example, a movie named testMovie will have the corre-
sponding class testMovie.class.

Member
In a movie converted to Java every cast member (either taken to the

stage or not) has a corresponding member object that’s created when the
movie begins playing.

A Member object contains the data and functions required to load,
draw, and use a single cast member. The Member class handles all the

built-in cast member types – shape, sound, bitmap, field, transition, and
script. We can create custom subclasses of Member.

The Member class’s public API primarily provides get-and-set access
to Lingo-visible properties, such as getWidth() and setText(String). The
DirectorMovie.getMember() functions fetch an existing member object
given its name or number. Use the Sprite.getMember() function to fetch
the cast member attached to a particular sprite.

Sprite
Every sprite that’s currently active has one

instance of the sprite class, which the player cre-
ates and destroys as required.

A sprite object contains the data and func-
tions required to animate a single sprite, includ-
ing stepping and interpreting the score and dis-
patching events to behaviors. The sprite class
handles all built-in sprite types, and we can cre-
ate custom subclasses of sprites.

The sprite class’s public API primarily pro-
vides get-and-set access to Lingo-visible proper-
ties, such as getInk() or setLocH(). We can use the
DirectorMovie.getSprite() function to fetch a
sprite object by number and manipulate the
sprite’s properties by the public API of the sprite
class. The Behavior.__s property is a reference to
the sprite object that a particular behavior is
attached to.

Behavior
This abstract class is the base class for all

sprites and frame scripts that contain property
declarations. Each such sprite or frame script is a
unique subclass of behavior. For sprite and
frame scripts that contain property declarations,
the behavior object’s public API consists of the
following:

• Event-handling methods: All handlers in other sprite and frame
scripts are grouped into the single function .uberHandleAnEvent().
Grouping these handlers reduces the number of distinct classes,
which substantially reduces the player’s size.

Lingo Value Classes
When the export Xtra for Java translates scripts to Java, it tries to

determine whether a variable or parameter’s data type is one of Java’s
built-in data types: int, String, float, or Boolean. If the Xtra can deter-
mine that the variable or parameter is one of Java’s built-in data types, it
takes the same data type in Java. Sometimes the Xtra can’t determine the
data type.

For example, several set statements assign a variable different data
types if the type isn’t a built-in Java data type. In these situations the Xtra
gives the variable or parameter the Java type LVal, or “Lingo value.” An
LVal object can be a null, integer, string, double, sprite, member, symbol,
linear list, property list, rect, or point data type. Various subclasses of
LVal handle the possible types of data that an LVal object can hold. The
player creates and destroys Lingo values as required. After Java creates a
Lingo value object, the object can’t change its type.
• LVal: The base class of all Lingo values. Its public API contains all the

Lingo-visible operations on any valid data types. These operations
include fetching the value as a certain type and all list and arithmetic
operations.

• LPoint: Extends LVal and implements Lingo values that are points. We
can use LVal.accessProp() to access the point’s locH and locV proper-
ties.

• LRect: Extends LVal and implements Lingo values that are rects. We
can use LVal.accessProp to access the left, right, top, bottom, width,
and height of the rect.

“by attaching

custom scripts

to the sprites

and cast

members,
WE CAN

ACHIEVE A
HIGH LEVEL
OF FRAMED
ANIMATION”

Java COM

12 FEBRUARY 2001

• LList: Extends LVal and implements Lingo values that
are linear lists. We can use various functions of the LVal
class to access the list.

Helper Classes
These classes have no public API. The Xtra includes them in the play-

er when they’re required.
• NetworkFetch: This class implements getNetText() and associated

functions.
• J10IS, J11IS, MyMemoryImageSource: These classes help decode GIF

and JPEG images.

Classes Generated by the Export Xtra for Java
The Export Xtra for Java places the Java source code it generates in

the file movieName.java. This file always contains the class movieName
and may also contain one or more behaviorMemberName classes.
• movieName Extends DirectorMovie: Each Director player for Java has one

subclass of DirectorMovie named after the original movie file. The Export
Xtra for Java creates this class. The movieName’s data and functions are
simply the original Director movie’s global variables and movie handlers.

• behaviorMemberName Extends Behavior: Every sprite and frame
script that has properties is a unique subclass of behavior. Each behav-
iorMemberName class’s data and functions are simply the properties
and handlers of the original behavior script. In addition, each behav-
iorMemberName class also has the Member variable __m, which is a
reference to the DirectorMovie object that owns the behavior.

Limitations of Custom Java
Following are some known tasks that custom Java can’t do in the

Director player for Java.
JavaBeans can’t easily be embedded because they’re drawn different-

ly than Director cast members and sprites. To embed the bean we have
to rewrite the bean’s source as a class that inherits from the member and
sprite.

AWT components and functionality can’t be integrated because
they’re drawn differently than Director draws. Director’s rich composit-
ing model uses a custom Java engine that doesn’t mesh with the AWT
drawing model.

Java’s other inherent limitations, including security restrictions and
lack of direct connection with the operating system, also limit how much
we can customize Java in an applet.

Not all the events that Lingo is capable of handling are converted to
the applet. For example, a doubleClick event can’t be directly converted
to an applet.

Many animation and movie features included in Director can’t be
converted to Java applets.

The Framework
In the context of developing a mechanism to load and play Director

movie applets, we need to understand how an applet works. While exe-
cuting, applets need to have information regarding the environment in
which they’re running, so they require a standard way of interacting with
their environments. This is provided by two interfaces: AppletStub and
AppletContext, both defined in the java.applet package. When an applet
is first created, a stub is attached to it using the applet class’s setStub()
method. This stub serves as the interface between the applet and the
browser environment or applet viewer environment in which the applet
is running. The AppletContext interface corresponds to an applet’s envi-
ronment – the document containing the applet and other applets (if any)
in the same document. The methods in this interface can be used to
obtain information about its environment.

We’ll create the applet, provide a stub and context for it, place it in a
container to be displayed, and execute its actions and properties. This is

possible only if the applet is the kind of component that can be placed
inside a container. If we look into the Java class hierarchy, we see that the
applet class inherits from the panel class that in turn is inherited from
the component class (see Figure 1).

An applet also inherits the properties of a component, and it should
be possible to place it inside a standard Java container, such as a frame
or window, as simply as any other graphics component, like Button or
TextField. So far it’s as simple as that. But applets are a special type of
component in the sense that they’re not static like AWT components, but
possess their own life cycles to execute. At the same time they can also
act as a container that can be a placeholder for other AWT components.

In a nutshell, to design and implement a framework for playing the
Director movie applets as stand-alone applications we need to achieve
the following:
• Get the Director movie in the form of an applet that’s like any other

normal applet extending from the java.applet.Applet class.
• Implement a class loader that will load a named applet class.
• Provide the required AppletStub and AppletContext interfaces to the

applet.
• Implement a container object, typically a frame or window, to hold the

applet.

Designing the ClassLoader
The CustomClassLoader class extends from the java.lang.Class-

Loader, an abstract class that contains an abstract method called load-
Class (String className, Boolean resolve) (see Listing 1). If the resolve
flag is true, the method should call the resolveClass() method of the
resulting Class object. Our CustomClassLoader class implements this

FIGURE 1 Class hierarchy of the java.applet.Applet class

Object

Applet

Panel

Container

Component

Java COM

14 FEBRUARY 2001

method and returns the Class object specified in the
variable className. Following is the code snippet doing
the required job:

…….

Hashtable classDefs=new Hashtable();

………

public Class loadClass(String className, boolean flag) {

try{

if(flag) {

resolveClass(findSystemClass(className));

classdefs.put(className, findSystemClass(className));

}

}catch(Exception e){ }

return (Class)classdefs.get(className);

}

The advantage of putting the resolved class into a hashtable is that
the same class doesn’t get loaded twice; if it’s already been loaded, it’s
fetched from the hashtable and returned as the class object.

The CustomStub class implements both AppletStub and AppletCon-
text interfaces defined in the java.applet package and provides the cus-
tom implementation of the methods defined within those two interfaces
(see Listing 2). In our program the CustomStub constructor expects
movieName to be passed because the movie applet queries the getPara-
meter(ShockwaveMediaFile) about the .djr file to be loaded. This is nor-
mally passed via the PARAM tag of the APPLET tag in the HTML file. To
return a proper .djr file name, the CustomStub needs to know the name
of the movie, which it does via the constructor.

The next step is to implement a movieLoader class that’s also a con-
tainer and can contain an applet and attach the necessary CustomStub
object to the applet (see Listing 3). This class essentially makes a call to
the loadClass() method of the CustomClassLoader class, passing the
name of the movie applet. It’s important to note that loading the applet
doesn’t mean the applet is executing its life cycle. We have to explicitly
call the life cycle methods of the applet (init(), start(), destroy()) as need-
ed and provide it a CustomStub object to see it perform the actions
defined within them. The following lines of the movieLoader class do
precisely that.

CustomClassLoader loader=new CustomClassLoader();

CustomStub stub=new CustomStub(movieName);

Applet theApplet=(Applet)loader.loadClass(movieName, true);

theApplet.setStub(stub);

theApplet.init();

theApplet.start();

The overall proposed architecture is presented in Figure 2.

Live Example
Once these classes are implemented we have everything in place to

load and run the movie applet, so it’s time to build a live example of the
concepts explored. I’ll present a bare-bones example of the process that
includes our own Java objects and methods within the movie applet. It
minimally illustrates Director’s animation capability and how we can
integrate the Director movie into our other external Java programs. The
example will obtain a random number between one and six from the
NumberGenerator class and show the image of the generated number
on the stage in response to clicking on a button.

The Movie
To produce the movie (sample.djr), I’ve created the .bmp images of

numbers one to six, made them cast members, drawn them onto the
stage to make them available as sprites, and put them on the stage so
they become invisible at the start of the movie. I’ll pick the relevant

sprite that corresponds to the number obtained from the NumberGen-
erator class and place it onto the stage at a particular location, 250,100,
in this case.

The NumberGenerator Class
This is a simple class that generates a random number (see Listing 4).

It has a default constructor and a method called generateNumber() that
returns a random integer between one and six. The movie applet will
instantiate this class and call the generateNumber() method each time
we hit a button on the stage. The sprite corresponding to the generated
number is then displayed to the location (250,100). This sounds much
simpler and may be frustrating for our animation lovers, but it teaches
us a few very basic rules of creating and integrating a Director movie
applet with other external Java programs.

Creating the Movie Applet
It’s beyond the scope of this article to show every step needed to fol-

low a Director movie (which readers can learn from the tutorial inside
the Director package itself). For this example, I’ve drawn a button on the
stage and attached a dummy script to the button that looks like this:

On mouseDown me

set the location of Sprite(1) to point(250,100).

End mouseDown

The script typically handles a mouseDown event on the button and
brings any particular sprite to the determined location (250,100). If we
don’t attach any script to the button before converting it to the Java
applet, the button sprite won’t be configured to register any event
through the Java code. This occurs because all the behaviors of the
sprites are registered inside the behavior class. Each member of the
movie has to be notified in a way that it’s capable of handling an event
on it. This is according to Macromedia’s model of handling the movies as
Java applets.

Having done that, if we save the movie as the source Java file (from
the “Save as Java” option), we’d see the sections of the code shown below.

The movie class (in this case I’ve named the movie as Sample)
extends the DirectorMovie class, which in turn extends the Applet class
(see Listing 5).

FIGURE 2 Object relationship of the developed framework

DirectorMovie

CustomStub

Container

CustomClassLoader

movieApplet

movieLoader

loading the
movie applet

passing the name
of the movie applet

loading the
custom stub object

inheritance

method calls

Java COM

16 FEBRUARY 2001

public class sample extends DirectorMovie

{

public sample() {

__m = this;

}

static public sample __m;

Following is an event-handling method that typically holds the trans-
lation of the movie scripts:

// --- Movie Script Translations ---

public void uberHandleAnEvent (Member member, int eventCode)

{

if (member.castNumber == 1 && member.memberNumber == 8) //Trans-

lation of script: castMember8

{

switch(eventCode)

{

case DirectorMovie.__MouseUp: // mouseUp

{

//set the loc of Sprite(1) to point (250,100)

__m.getSprite(1).setLoc(new Lpoint(250,100).asPoint());

break;

}

default: break;

}

}

}

The event handling contains the
Java equivalent translation of the Lingo script we attached to the button.
We need to modify this code to our specific needs to show the generated
number sprite on the stage.

Adding Our Own Objects
Now we’re ready to add our own

NumberGenerator object to the movie to obtain the random number
between one and six generated by the NumberGenerator class. First we

declare a NumberGenerator object
like this at the class level:

NumberGenerator generator= null;

Then we initialize the object in the
constructor of the sample.java.

generator=new NumberGenerator();

Now we need to write the code to
obtain the number by invoking the
generateNumber() method of the
NumberGenerator class. We do this
in the event-handling portion of the
sample.java and bring the corre-
sponding sprite to the predeter-
mined point (250,100) location (see
Listing 5). Each time we click the but-
ton, a number is generated and
shows the relevant sprite. But
remember we also have to remove
any previous sprite present on the
stage.

There are two ways to do this:
1. Read the number generated before generating a new number, and

remove the corresponding sprite from the stage.
2. Before generating a new number or after obtaining the new number,

remove all the number sprites from the stage, then show the sprite
corresponding to the generated number.
Since the first method seems more efficient to me, I’ll follow that.

Removing a sprite from the stage is as simple as moving it to a high loca-
tion, for example 2000,2000. This is no doubt beyond the stage of the
movie, which is designed to be full-screen size in any resolution.

Setting the Classpath
We must include the current working directory in our classpath or

mention it explicitly while executing the movie program.

Running the Application
We’ve completed the framework, so it’s as simple as running the

application from the command line by typing the command:

java movieLoader sample

and the movie appears (see Figure 3). We can generate and see the num-
ber by clicking on the button on the stage.

Conclusion
This article is a guideline to running Director movies as

stand-alone Java applications. Keep in mind that this is a developing
field and improvements are subject to further research. Take interest in
this area and develop more robust and efficient frameworks to work in.

Resources
Additional information is available at www.mcli.dist.maricopa.

edu/director/javalist/dir2java.html.
For Java support within Lingo, visit www.macromedia.com/sup-

port/director/how/expert/javasupport/Javasupp.html

AUTHOR BIO
Samudra Gupta has been involved in the Java field in various research projects for more than three years.
Currently, he works as a consultant to various UK concerns for their intranet- and Internet-based e-com-

FIGURE 3 Screenshot of the Director movie running as Java application

samudrag@hotmail.com

“this is a

developing

field and

IMPROVE-

MENTS ARE

SUBJECT TO

FURTHER

RESEARCH”

/**
* this class is a customized class loader which loads a named
class and puts into a Hashtable for future reference
*/
import java.io.*;
import java.util.*;

public class CustomClassLoader extends ClassLoader
{

Hashtable classdefs; //Hashtable for storing the reference
of the loaded class(s)

public CustomClassLoader()
{

classdefs=new Hashtable();
}

/**
* this method loads a named java class file and returns it as a
Class object
*/

public Class loadClass(String className, boolean flag)
{

try
{

if(flag)
{

resolveClass(findSystemClass(className));

//putting the class name into the hashtable
classdefs.put(className, findSystemClass(className));

}

}catch(Exception e)
{
System.out.println("Error in loading the class :

"+e.toString());
}

//returning the class by picking up from the hashtable
return (Class)classdefs.get(className);

}

}

import java.applet.*;
import java.awt.*;
import java.net.*;
import java.util.*;
import java.io.*;
/**
* This is a custom class providing the required AppletStub and
AppletContext environment to the
* movie applet. This is a very minimal implementation of the
AppletStub and AppletContext interfaces with
* only the methods implemented as they are required by the movie
applet.

* The getCodeBase() , getImage(0 and getParameter() methods are
used by the movie applet.
* So they are implemented accordingly.
*/

public class CustomStub implements AppletStub, AppletContext, Enu-
meration
{

private URL codeBase;
private URL documentBase;
private String mName=null;
/* The constructor accepts the name of the movie because from the
getParameter() method we have to return
* the movieName.djr as a string which is used by the movie applet
to display the movie.

*/
public CustomStub(String movieName)
{
mName=movieName;
try
{

codeBase=new URL("file:/"+System.getProperty("user.dir")+"/");
documentBase=codeBase;

}catch(Exception e)
{

}
}

public void appletResize(int w, int h){ }

public AppletContext getAppletContext()
{
return (AppletContext)this;

}

public URL getDocumentBase()
{
return documentBase;

}

public URL getCodeBase()
{

return codeBase;
}

public String getParameter(String param)
{
return mName+".djr";

}

public boolean isActive()
{
return true;

}

//AppletContext methods

public Applet getApplet(String name)
{
return null;

}

public Enumeration getApplets()
{
return (Enumeration)this;

}

public AudioClip getAudioClip(URL url)
{
return null;

}

public Image getImage(URL url)
{
return Toolkit.getDefaultToolkit().getImage(url);

}

public void showDocument(URL url){ }
public void showDocument(URL url, String target){ }
public void showStatus(String status){ }

//Enumeration methods

public boolean hasMoreElements()
{
return false;

}

public Object nextElement()
{
return null;

}
}

/**
This class loads a Director movie applet and displays in a java
Frame component
*/

import java.applet.*;
import java.awt.*;

Listing 3 MovieLoader.java

Listing 2 CustomStub.java

Listing 1 CustomClassLoader.java

Java COM

18 FEBRUARY 2001

Java COM

20 FEBRUARY 2001

import javax.swing.*;

public class MovieLoader extends JFrame
{

CustomClassLoader loader=null;
Class theClass=null;
Applet theApplet=null;
CustomStub stub=null;

public MovieLoader()
{
super("The sample Director movie");

try
{
//setting the size of the frame to 400X400
this.setSize(400,400);

//setting the background color of the frame to white
this.setBackground(Color.white);

//making the frame visible
this.show();

}catch(Exception e)
{
System.out.println(e.toString());

}

}

/**
* this method loads a named movie applet

*/
public void loadMovie(String movieName)
{
try
{

//initializing a CustomClassLoader object
loader=new CustomClassLoader();

//loading a named movie applet class through the CustomClass-
Loader object

theClass=loader.loadClass(movieName,true);

//casting the loaded class to an Applet class
theApplet=(Applet)theClass.newInstance();

//initializing the CustomStub class with the name of the movie
applet

stub=new CustomStub(movieName);

//providing the applet a CustomStub object
theApplet.setStub(stub);

//setting the width and height of the applet
theApplet.setSize(400,400);

//adding the applet to the frame
this.getContentPane().add(theApplet);
}catch(Exception e){ System.out.println(e.toString());}

//calling the life cycle methods of the applet

theApplet.init();
theApplet.start();
validate();

}

public static void main(String args[])
{

new MovieLoader().loadMovie(args[0]);
}
}

class NumberGenerator
{

public NumberGenerator()
{

}

public int generateNumber()
{
java.util.Random random = new java.util.Random();
int i = random.nextInt(5)+1;
return i;

}
}

import java.applet.Applet;
import java.awt.image.*;
import java.awt.*;
import java.util.*;
import java.net.*;

public class sample extends DirectorMovie
{

NumberGenerator generator = null;
int number = 0;
int usedNumber=0;

static public sample __m; //global movie variable declaration

public sample()
{

__m = this;

generator = new NumberGenerator();

}

/**
* --- Movie Script Translations ---

*/

public void uberHandleAnEvent (Member member, int eventCode)
{

if (member.castNumber == 1 && member.memberNumber == 8) //ans-
lation of script: castMember8

{
switch(eventCode)

{
case DirectorMovie.__MouseUp: // mouseUp

{
//finding if there is a number already displayed and

then moving it out of stage
if(usedNumber != 0)
{

__m.getSprite(usedNumber).setLoc(new LPoint(
2000,2000).asPoint());

}

//obtaining a generated number from the NumberGenerator class
number=generator.generateNumber();

// set the location of the sprite corresponding to the gener-
ated number

// to point(250,100)
__m.getSprite(number).setLoc(new LPoint(250, 100

).asPoint());

usedNumber = number;
break;
}

default: break;
}
}

}
}

Listing 5 sample.java

Listing 4 NumberGenerator.java

Java COM

22 FEBRUARY 2001

Last month in JDJ (Vol. 6, issue 1) we

looked at the advantages of downloading

servlets and JavaServer Pages (JSP) from a

repository, for example, the same way a browser

downloads applets. We described a simple

implementation of this concept based on a ser-

vice servlet and a custom class loader. This tool,

named JSPservlet, handled servlets and JSP

packaged in JAR archives to minimize the num-

ber of connections and transfers required.

This month I’ll show you how to publish an
archive, update it or force its download through
a JSPupdate servlet, and extend the solution to
handle resources, HTTP caching, request for-
warding, page inclusion, and JSP beans. The
code listings for this article can be found on the
JDJ Web site, www.JavaDevelopersJournal.com.

Archive Update
This simple JSP, JSPupdate, handles archive

publishing and updates (see Figure 1).
JSPservlet and JSPupdate are packaged in a

Web application, typically in a WAR archive
that’s described by a web.xml deployment
descriptor (see Listing 1). This archive is a gen-
eral-purpose agent responsible for download-
ing the target presentation archives and rout-
ing requests to their servlets and JSPs.

To publish a new archive you must query the
proper agent and provide the archive name and the

remote location where it should be downloaded
from. Simply identify the agent on your browser by
its URL, in this example http://localhost:8080/jdj/
JSPupdate, where http://localhost:8080 identifies
the Java server and jdj the agent’s Web application.
This displays the form in Figure 1. Fill it and click
the button to start the publishing. Use the same
form to change the archive location or to force a
new download. In the latter case you don’t even
need to fill the remote location.

Let’s go back to the tool design and walk
through the implementation of JSPupdate (see
Figure 2).

Tool Design
The JSPservlet is a special servlet that han-

dles HTTP requests for a Web application and
forwards them to target servlets and JSPs with
the help of the following objects:
• JSPhandler: Manages Web applications and

maintains a ClassEntry map.
• ClassEntry: Manages archives and main-

tains a cache of target objects.
• JSPloader: Maintains a cache of target classes.

Therefore JSPupdate handling implies the

following steps:
1. Identify the relevant JSPhandler and create

it on the fly if it doesn’t exist.
2. Find the ClassEntry responsible for the

archive.
3. If it doesn’t yet exist, create a ClassEntry. In

this case the tool acts as an archive publisher.
4. Otherwise, unreference the JSPloader, clear

the target object cache, and instantiate a
new JSPloader.

The first step is implemented in JSPupdate
and JSPhandler. Listing 2 shows the JSPupdate
code. I prefer to use the GET mode to simplify
updates by programs or scripts. I’ll return to this
point in the next section. In the script, starting
on line 27 in Listing 2, I first get the JAR name
you filled on the form and the application name,
contextPath, from the URL. Then I look for the
corresponding JSPhandler in the JSPhandler’s
HashMap, and finally I invoke the JSPhandler’s
update() method. I postpone the explanation of
the case in which the appropriate JSPhandler
doesn’t exist to the RequestDispatcher section.

Listing 3 shows the JSPhandler.update()
implementation. Remember the tool mini-

WRITTEN BY ALEXIS GRANDEMANGE

FIGURE 1 JSPupdate display

F E A T U R E

Develop a solution that’s portable

across Java application servers

Develop a solution that’s portable

across Java application servers

Part 2 of 3

Java COM

24 FEBRUARY 2001

mizes downloads from a central repository and handles its unavailabili-
ty thanks to a local archive copy. JSPhandler.update()first removes this
archive cache with File.delete(). Then, if you filled the Remote Location
field, it updates the remoteLocProp property and persists it on remote-
LocFile. Eventually JSPhandler.update() looks for the appropriate
ClassEntry in the classEntries HashMap and invokes its update()
method. If it doesn’t find it, it creates a new ClassEntry and adds it to
classEntries.

Listing 4 shows the ClassEntry.update() implementation. It first
invokes the destroy() method of all cached target objects. Then it clears
servletObjects, the target object’s HashMap, to unreference them and
then unreferences the corresponding JSPloader instance. Next ClassEn-
try.update() invokes the garbage collector, which can free the target and
JSPloader objects and also the target classes and static data. Though the
garbage collection can take time, it reduces the Java server footprint and
improves its behavior. I considered the garbage collection duration to be
a minor drawback as I designed JSPupdate to be invoked outside peak
hours. Once the Java Virtual Machine (JVM) reclaimed the memory
occupied on behalf of the archive, ClassEntry.update() created a new
JSPloader and a new target object cache.

Scripted Update
JSPupdate uses the GET mode. To require the update of an application

whose URL is www.iamakishirofan.com/gunnm for a JAR named gally
stored in a repository located in http://myserver, you simply need to use
the URL www.iamakishirofan.com/gunnm/JSPupdate?jarName=gally&
remoteLocation=http%3A%2F%2F myserver&Submit=JSPupdate.

Listing 5 shows a Java class, UpdateClient, you can use to update an
archive from the command line or from a script. To update the applica-
tion above, invoke UpdateClient either with Java JSPservletPkg/ Update-
Client http://www.iamakishirofan.com/gunnm gally http:// myserver if
you want to publish or update the remote location or with Java
JSPservletPkg/UpdateClient http://www.iamakishirofan.com/gunnm
gally if you simply need to force a download.

UpdateClient first builds a URL string with the UpdateClient’s para-
meters. To convert the remote location to a MIME format that’s appro-
priate in a URL, UpdateClient simply uses URLEncoder.encode(). Then
it creates a URL and opens and reads a stream, which it parses to check
the Java server response. Use the exit code in your script to handle error
cases; the most common one is server unavailability.

Resources
Consider the common case in which a JSP or servlet refers to an image

with a URL that’s relative to the current path. Since JSPservlet is configured
in the Web application deployment descriptor to handle all its requests, it
also has to process image requests. This case raises three issues:

1. How to detect an image request
2. Where to download the image from
3. Where to handle the request

I chose to delegate images and other resource handling to JSPloader
because, as we’ll see later in the beans section, it has to address other
resource needs anyway.

Where should we download the resources from? Should we cache
them? These aren’t trivial issues, as an image is much larger than a JSP or
servlet. My choice is to support resources that are included in the archive
file or stored in the same remote location as the archive, and to cache
resources in memory.

Listing 6 shows the resource handling in JSPservlet. JSPservlet detects
images and other resources such as HTML files after their URL extension.
It also sets the content type according to the URL extension. Then it uses
JSPhandler.getResourceAsStream() to get an input stream on the resource
from JSPloader. JSPhandler simply forwards the request to the appropri-
ate ClassEntry, which invokes JSPloader.getResourceAsStream(). If getRe-
sourceAsStream() doesn’t find the resource, JSPservlet invokes
HttpServletResponse.sendError(SC_NOT_FOUND), which builds an
HTTP response with a 404 status, which indicates that the requested
resource is not available. Otherwise JSPservlet reads the input stream and
rewrites it on the response output stream.

To support resources embedded in an archive, I modified last month’s
JSPloader.ParseStream() method. Remember this method is invoked dur-
ing JSPloader construction to parse the archive content that’s read from
the local archive cache or from its remote location. In the latter case it’s
also responsible for storing the archive in the local cache. However, the
modification is minimal, as you can see in Listing 7. JSPloader maintains
a resources HashMap that acts as a resource memory cache the way
classes act as a class memory cache. parseStream stores a resource in a
byte array in resources, instead of storing a class in classes.

Listing 8 shows the JSPloader.getResourceAsStream() implementa-
tion. It first tries to retrieve the resource from the resources memory
cache. If it doesn’t find it, it tries to download the resource from the
same location as the archive with URL(remoteLoc).openStream().
Then it stores it in resources. If a resource is stored in the archive, it’s
always served from resources. A resource that must be downloaded is
downloaded only once, then served from resources. If the resource is
neither in the archive nor remotely available, getResourceAsStream()
delegates the request to getResourceForward() in order to support
local Java server resources. getResourceForward() first tries to find the
resource in JSPservlets’s Web application using the getResource-
AsStream() method of JSPservlet’s class loader, then tries to find it else-
where using the getResourceAsStream() method of the JSPloader par-
ent class loader.

Proxy and Browser Caching
Figure 3 displays a typical HTTP caching scenario with three actor

types, browsers, a proxy, and an HTTP server. The first browser requires
a URL that the proxy can’t find in its cache. So it requests the URL from
the HTTP server with an HTTP GET. The HTTP server returns a response,
which also includes Expires, ETag, and Last-Modified header fields. The
Expires field gives the date/time after which the response is considered
stale, the ETag field provides a Entity tag value that can be used for com-
parisons, and the LastModified tag indicates the date and time the serv-
er believes the data was last modified.

The proxy stores the response in a cache and returns it to the browser.
Then a second browser requires the same URL. The proxy finds the
response isn’t stalled so it returns it to the browser without requesting the
HTTP server. Next, a third browser requires the same URL and this time the
response is stalled but still in cache, so the proxy asks the HTTP server if the
response is still valid with a conditional HTTP GET (a GET with an IfNone-
Match or IfModifiedSince field). The HTTP server checks if the Entity tag is
the same in the case of IfNoneMatch, or if the LastModified tag hasn’t
changed in the case of IfModifiedSince. If yes, it sends a NotModified

FIGURE 2 Tool class diagram

HttpServlet

contextPath

HashMap
(from java.util)

jarName

JSPhandler

get ()

JSPloader

loadclass()

ClassLoader
(from java.lang)

loadclass()

Servlet

classPath

ClassEntry

get ()

Servlet/JSP

service()

JSPservlet

<<static>> getHandler()
service()

1

1

Java COM

26 FEBRUARY 2001

response without a body. If the browser requested an image, the image is
not transferred. If it requested a dynamic page that required RDBMS access
or heavy computation, this processing is not needed.

The HTTP server sends an updated Expires value in its NotModified
response, so if a fourth browser requests the same URL before the updat-
ed date/time, the proxy will again serve the response without involving
the HTTP server.

I described a proxy’s behavior for clarity, but a browser also caches
the responses it receives and behaves exactly the same way regarding the
header fields presented in Figure 3. It’s the reason I had to involve four
different browsers in the scenario. As a consequence, an HTTP server
can drive both proxy and browser caching with the same code.

To implement that mechanism for resource requests, I had to make
two decisions:

1. Where should I take the LastModified date/time?
2. Should I implement Expire?

Remember the JSPloader.getResourceAsStream() implementation? It
first tries to retrieve the resource from the archive, then from the same
location as the archive, and eventually by asking the Java server class
loader. When the resource is stored in the archive, it picks up the Last-
Modified date/time from the archive entry with JarEntry.getTime(). When
the resource is stored in the same location as the archive, it uses a URL-
Connection object to download it. URLConnection acts as a browser, so it
has access to HTTP headers. It even provides helper methods for the most
common headers, such as URLConnection.getLastModified() for Last-
Modified that’s invoked by JSPloader.getResourceAsStream(). In the last
case where JSPloader.getResourceAsStream() asks the Java server for the
resource, I use the archive cache creation time. The rationale is this sort of
resource is typically stored on a Java server and therefore cheap to retrieve.

The bottom line is:
1. If an archive or downloaded resource hasn’t changed, JSPservlet will

return NotModified even after an archive update.
2. For a resource retrieved by the Java server class loader, JSPservlet will

return a full response at the first request after an archive update.

When the proxy receives a response containing ETag or LastModified,
it can set an internal expiration value. However, this behavior isn’t manda-
tory and can vary, so I prefer to implement Expire and let you set it in an
additional initialization parameter, expiration, with a five-second default.
The HTTP 1.1 specification allows you to go up to one year, but its optimal
value depends on your configuration. The higher it is, the more time it will
take to refresh caches after an update. If your browsers are on the same
LAN as the Java server, don’t worry about round-trip delays.

Let’s go back to Listing 6 to look at the implementation details.
JSPservlet checks if the HTTP request was conditional. More precise-

ly, it retrieves the value of IfNoneMatch and IfModified header fields. If
they’re set, it checks, respectively, if client Entity tag and Last Modified
date/time are still the same as server ones. If they are, JSPservlet returns
an HTTP response with a status NotModified (303), using HttpServletRe-
sponse.sendError (SC_NOT_MODIFIED). This response includes an
Expires field set with:

HttpServletResponse.setDateHeader("Expires", System.currentTimeMil-

lis() + jh.expiration * 1000)

setDateHeader is another convenient helper method that simplifies
setting a date header field. It takes two parameters, the name of the field
and the elapsed time since the epoch (January 1, 1970). JSPhandler com-
putes it using JSPhandler’s expiration, which contains the expiration ini-
tialization parameter.

If the HTTP request is not conditional or if cache entries are stalled,
JSPservlet sends the resource. It’s set before the Date, Cachecontrol,
LastModified, ETag, and Expires header fields. Date represents the date
and time the message originated. JSPservlet builds this Date the same
way as Expires. Cachecontrol:public indicates that the response may be
cached by any cache. I already covered LastModified and ETag. Both
contain the date and time extracted by JSPloader. LastModified han-
dling is slightly more complex, as JSPservlet formats it in the RFC 1123
format – the HTTP preferred date format – using a java.text.Simple-
DateFormat.

RequestDispatcher
When building a Web application, it’s common to forward a request

to another servlet or to include the output of another servlet in the
response. The servlet specification defines the RequestDispatcher inter-
face to accomplish this. The support of this feature implies some modi-
fications in the JSPservlet code.

First let’s look at why and how the JSPservlet is involved. RequestDis-
patcher lets you forward to another servlet or include the output of a servlet,
the forwarded or included servlet being in the same Web application. Since
JSPservlet handles all requests toward a Web application, it’s invoked.

The first issue is related to the include specification. The included
servlet has access to the including servlet’s request object. So when
JSPservlet is invoked on behalf of an included servlet, the request path
doesn’t contain its path but the path of the servlet that included it. This
is annoying since JSPservlet uses this path to identify the archive and the
class to forward the request to. Fortunately it’s possible to know the path
by which a servlet was invoked thanks to special request attributes
described by the Java Servlet Specification, v2.2. For instance, I can get
the included servlet pathInfo and extract its archive and servlet names
with:

String pathInfo =

(String)request.getAttribute("javax.servlet.include.path_info")

If the attribute is not defined, it means the servlet wasn’t included, so
I can safely retrieve pathInfo with request.getPathInfo().

A larger issue is related to the context root. You can get a RequestDis-
patcher with ServletContext.getRequestDispatcher(“/garden/header.
html”). The “/garden/header.html” path is relative to the root of the Web
application, which doesn’t contain the archive name. So JSPservlet won’t
be able to handle the request. There are two solutions to this problem.
The fully standard one is to use relative paths with ServletRequest.getRe-
questDispatcher(). Since we’re using ServletRequest, the path can be rel-
ative to the current request. It addresses the common case where the
included servlet is located at the same place as the including one. If it’s
not the case, you must add the archive name, for instance:

ServletContext.getRequestDispatcher(jarName +

"/garden/header.html")

FIGURE 3 Caching mechanisms

Proxy HTTP Server
HTTP GET HTTP GET

HTTP resp
HTTP resp
OK (200)

HTTP GET

HTTP resp

Browser 2

HTTP GET

HTTP resp

Browser 3

HTTP GET

HTTP resp

Browser 4

Browser 1

Expires
ETag
Last-Modified

Conditional GET (If-None-Match/
If-Modified-Since)

HTTP resp/Not Modified (304)

Expires

Java COM

28 FEBRUARY 2001

The problem with this solution is it breaks the independence between
development and deployment (where archive names are chosen). In the
complete implementation I provide a JSPhandler.getJAR (ServletRequest)
static method to return the current archive name. You can use it without
breaking your servlet portability if you use reflection as shown in Listing 9.

I considered and rejected a fully transparent method. Remember the
including servlet is invoked through JSPservlet. I could implement a spe-
cial ServletContext that delegates all calls to the JSPservlet ServletCon-
text except for getRequestDispatcher() in which I’ll transparently add the
current archive name. I rejected this solution since it forbade invoking a
servlet hosted in a different archive. However, if your requirements are
different from mine, you can implement this solution.

Now we can come back to the JSPupdate pending issue, to the update
handling when the appropriate JSPhandler doesn’t exist yet. The problem’s
origin lies in the JSPupdate and JSPservlet deployment descriptor (see
Listing 1). JSPupdate can’t be included in an archive because it would be

unable to download an initial archive, and JSPhandler relies on JSPservlet
init-params to initialize. JSPupdate calls JSPservlet when it needs to create
a JSPhandler and uses a RequestDispatcher to achieve this.

Let’s revisit the JSPupdate code (see Listing 1). On line 39 you see that
when the appropriate JSPhandler doesn’t exist, JSPupdate creates a
RequestDispatcher with getServletContext().getRequestDispatcher
(“/JSPservlet”) and uses it to include JSPservlet.

JSPservlet.service() must be modified to include the code in Listing
10 in order to identify and process updates. This code first retrieves the
JSPservlet context path using the javax.servlet.include.context_path
attribute, since the JSPservlet is included. Then it invokes getHandler(),
which will create the appropriate JSPhandler. Next, the implementation
detects that it’s called through a JSPupdate include by checking the
included servlet name returned by request.getServletPath(). Eventually
it retrieves the archive name and remote location from the request and
invokes JSPhandler.update(), which calls ClassEntry.update().

Beans
JSP Specification1.1 provides two mechanisms to integrate

Java logic: beans and the more recent tag extensions. A tag
extension is arguably more sophisticated and complex. How-
ever, it requires no special handling because tag extensions
are converted to Java code at JSP compilation time. Therefore
we don’t need to distribute tag library descriptors and can
retrieve tag handler classes from the archive as usual. Though
beans are simpler, they can raise an issue in the tool context.

The compiled JSP should create a bean with
Beans.instantiate(getClassLoader(), beanName). This stat-
ic method lets you specify which class loader to use, and its
beanName can indicate either a serialized object or a class.
For example, given a beanName of “x.y”, Beans.instantiate
would first try to read a serialized object from the resource
“x/y.ser”; if that failed, it would try to load the class “x.y”
and create an instance of that class. To fully support beans,
I need to allow unserializing from archives.

My code supports the Beans.instantiate(getClassLoader(),
beanName) way to create the bean (Tomcat code) because
target JSPs are loaded by JSPloader. Therefore getClass-
Loader() returns the relevant JSPloader instance, whose
getResourceAsStream() is invoked to get the serialized bean.

Summary
It’s not difficult to develop a solution that’s portable

across Java application servers and:
1. Dynamically downloads Web applications from one

or many repositories.
2. Commands downloads or updates from anywhere

using a browser or a command that can be started
from a scheduling tool.

3. Supports Web applications’ JSPs and servlets accord-
ing to JSP Specification v1.1 and Java Servlet
Specification v2.2.

A Java server can act as a browser that downloads applets
on demand and therefore is administration-free. However,
there’s a difference. There’s nothing to prevent a large num-
ber of browsers from downloading the same applet at the
same time, collapsing the network. As Java servers down-
load only when commanded, they avoid this problem.

AUTHOR BIO
Alexis Grandemange is an architect and system designer. A Java programmer since
1996 with a background in C++ and COM, his main interest is J2EE with a focus
on design, optimization, and performance issues.

agrandemange@amadeus.net

Java COM

30 FEBRUARY 2001

Part 1: EJB/CORBA Integration
Communicating from EJB to CORBA

is the simplest case. The EJB will require
an ORB and some means of looking up
the remote CORBA object, the servant,
in a directory service that could be Cos-
Naming or JNDI over CosNaming. Note:
It isn’t necessary to use CORBA 2.3,
which is required by RMI-IIOP (see
below). Like any external resource, such
as a socket or file descriptor, any ORB
can be initialized and used by the EJB.

ORB initialization should be per-
formed once using the singleton design
pattern that can act as a factory for look-
ing up remote CORBA servants. A suit-
able design to ensure this scenario
requires the use of a stateless session
bean, which is never passivated. Entity
or stateful session beans may be passi-
vated and reactivated and would require
the disposal and cleanup of the ORB,
which has a high performance cost as
well.

Using the stateless session bean fits
the EJB model best, and the ORB can be
a static data member in the bean or in
the above mentioned singleton support
class to help ensure one instance. A
deployment descriptor can also be set,
for example, in WebLogic, which allows
the container to create only one state-
less session bean.

Currently, there’s no standard map-
ping between EJB and CORBA for pass-
ing user identity and transaction propa-
gation. So, if transaction and security
services are required in your implemen-
tation, then the EJB bean wrapping this
CORBA call should invoke the appropri-
ate CORBA services in the desired way.
In other words there’s no automatic
solution, and transaction and security
will need to be customized for your situ-
ation.

In Listing 1 (see www.JavaDevelopers
Journal.com for listings) the Call
CorbaBean is a stateless session bean
implementation that makes a call to an

object R which initializes the ORB (if it’s
not initialized) and calls the CORBA ser-
vant. The idl is also shown; the servant
CORBA implementation isn’t included
but follows standard CORBA. More
important, the R class shows the encap-
sulation of the CORBA processes in a
singleton and as a cascade pattern to
ensure single initialization and a simple
interface – actually too simple, as an
actual implementation would more like-
ly provide factories for different types of
objects as required by the application. A
client would look up the home interface,
CallCorba, and create a CallCorba bean
to call the remote function “call.”

CORBA to EJB
Ideally, communication from EJB to

CORBA should be over RMI-IIOP. How-
ever, RMI-IIOP requires a CORBA 2.3
ORB and an EJB container that supports
RMI-IIOP. Because the EJB 1.1 specifica-
tion only recommends RMI-IIOP but
doesn’t require it, many of the applica-
tion servers currently available are in
compliance with the EJB1.1 specifica-
tion and don’t fully support RMI-IIOP. In
EJB 2.0, released in July 2000, RMI-IIOP
is required, and interoperability will
eventually be available in all the major
container vendors.

Nevertheless, it’s still possible to use
RMI-IIOP in some application servers,
although it’s likely to range in complexi-
ty from easy to perhaps impossible. For
example, Inprise’s Application Server
product allows easy interoperability
with CORBA because it’s built on RMI-
IIOP as would be expected, as Inprise
has integrated it with their Visigenic
product. On the other hand, other appli-
cation servers may not provide RMI-
IIOP easily for EJBs and will require cre-
ating CORBA idl stubs for all the EJB
objects, then successfully compiling the
resulting idl with an idl compiler. Some-
times the resulting idl must be tweaked
or modified. To create RMI-IIOP
between a CORBA client and EJB, follow

these steps:
1. Use rmic, which comes with RMI-

IIOP, to create idl files from your EJB
Home interface.

2. Use a CORBA 2.3-compliant idl com-
piler to generate your stubs.

3. Create your EJB CORBA client.

As in any new standard, interoper-
ability between vendors is particularly
difficult.

Even if the above steps can be
accomplished with your application
server, there’s no standard for passing
user identity and the transaction propa-
gation over RMI-IIOP to the client. EJB
transaction and security services aren’t
accessible over RMI-IIOP; consequently,
these services will lack any current RMI-
IIOP solution.

So although RMI-IIOP is the pre-
ferred solution for interoperability
between EJBs and CORBA and will cer-
tainly be the better solution in the
future, it may be required to communi-
cate without RMI-IIOP. One flexible
solution is to provide a CORBA wrapper
servant that directs CORBA calls to the
EJB object. Because this solution can
easily be replaced with RMI-IIOP in the
future, it will provide a design that
evolves.

First, check your CORBA and EJB
products. If they easily support RMI-
IIOP interoperability, then use that
approach. If not, the example code
demonstrates a wrapper that delegates
CORBA calls to EJB.

In Listing 2, the call.idl is the idl for
the call to the EJB. The EJBWrapper
wraps the EJB and allows the CORBA
client, WrapperClient, to access the EJB
though the EJBWrapper. The EJBWrap-
per follows the standard adapter or
wrapper pattern and simply delegates
the calls from the client to the EJB. Note
that we’re actually using the same ses-
sion stateless bean used in the previous
example for simplicity, although one
would never make a call from CORBA

E J B / C O R B A

EJB, CORBA, and COM

WRITTEN BY
SIRL DAVIS

Maintaining interoperability

I
n EJB/CORBA integration, complexity can range from simple to complex and depends in part on the
direction of the communication. From EJB to CORBA, communication is relatively simple because the
EJB bean invokes CORBA as it does any external resource. CORBA-to-EJB communication, however,
depends on the application server’s support of RMI-IIOP. If the application server doesn’t support RMI-
IIOP, then it’s best to create a wrapper or adapter class that redirects or delegates the function calls
from the client via a CORBA servant, which then calls the EJB.

Java COM

32 FEBRUARY 2001

E J B / C O R B A
through EJB to CORBA; the example is
heuristic.

Design Issues
The design issues regarding commu-

nication from CORBA to EJB concern
the usage of RMI-IIOP where possible,
and where not possible the usage of the
adapter design pattern, which ensures
that the external resource, the ORB, is
carefully handled. The stateless session
bean offers the best EJB for EJB-to-
CORBA communication because it
allows easy management of the ORB. In
addition, because the future J2EE soft-
ware will evolve to support CORBA-EJB
interoperability more fully, any effective
design must be able to easily absorb
future changes.

Part II: COM/EJB Integration
Before looking at COM-EJB commu-

nication, it’s worth pointing out that
SOAP is a strategic direction Microsoft is
taking for interoperability. Consequent-
ly, SOAP should be considered for com-
munication between EJB and COM.
However, it would be a custom solution
without the support of current applica-
tion servers or J2EE technology. In addi-
tion, SOAP is relatively new, and not
many stable implementations exist.

For some packages using SOAP see
www.alphaworks.ibm.com/tech/soap4j
or http://msdn.microsoft.com/xml/ de-
fault.asp. For a stable production solu-
tion, COM/EJB bridges provide the best
synchronous solution and are described
below, leaving SOAP for a future investi-
gation.

Bridges
• www.linar.com/: J-Integra is a bidi-

rectional, pure Java-COM bridge.
• www.alphaworks.ibm.com: Bridge2

Java allows ActiveX objects to be used
in Java.

• http://developer.java.sun.com/
developer/earlyAccess/j2eecas/:
Allows COM clients to access EJBs.

• WebLogic’s COM Bridge in WebLogic
Server: Allows bidirectional COM/
RMI interaction.

COM to EJB
Many COM-to-Java bridges exist.

Sun has an early access Client Access
Services (CAS) COM Bridge available at
http://developer.java.sun.com/devel-
oper/earlyAccess/j2eecas/, that will
allow any COM-enabled client to access
any EJB object. In addition, bridges such
as J-Integra (see www.linar.com/) and
WebLogic provide bidirectional com-
munication. Below we look at WebLog-
ic’s COM bridge; it’s a popular applica-

tion server that simplifies the aspect of
bridging between COM and EJB.

Communicating from COM to EJB
usually means that Visual Basic clients
are accessing EJBs. WebLogic, for exam-
ple, supports the ability of Visual Basic
clients or other Microsoft services to
access EJBs. Because bridges support
this communication rather well, it won’t
be addressed in any more detail, and the
remaining discussion will be on com-
municating from EJB to COM, which is
more difficult.

EJB to COM
Communication from EJB to COM is

necessary if services in Microsoft are
required by EJBs. WebLogic’s COM solu-
tion hosts the COM object as an RMI
object. As a representative example,
we’ll address this bridge in detail.

WebLogic Wraps COM
Note that the WebLogic Server wraps

the COM object, Test.dll, and provides an
RMI interface any Java client on NT can
access. WebLogic provides a “com com-
piler,” which takes a dll file and produces
the Java classes, including the interface
used by RMI clients. No programming is
required, as the code is automatically
generated. The command is

jview weblogic.comc -nothreads -reg-

ister

c:\weblogic\examples\com\testser\Test

Server.dll

Unfortunately, because the standard
(Sun) Java Virtual Machine differs from
the Microsoft Java Virtual Machine in
serialization across RMI, any network
connection between the two JVMs is
incompatible. Sun Microsystems is
suing Microsoft over this and other dif-
ferences. Consequently, WebLogic certi-
fies that COM will work only if the
WebLogic server is run on the Microsoft
VM, and only Java clients running under
the Microsoft VM will be able to connect
to the WebLogic server, so the COM
bridge will work only on NT and using
only the Microsoft VM. Note: Even if the
Sun and Microsoft JVMs were interoper-
able, C++ clients still couldn’t connect to
WebLogic’s RMI. Therefore, the second
CORBA wrapper is needed to provide
true interoperability (see COM/CORBA/
EJB Integration below).

Tests Performed
Three tests of increasing complexity

were performed using the above bridge.
The first was a simple function that
returned void. The second returned a
String. The third test returned various
Microsoft COM objects that dealt with

the data access (DAO) directly. Both the
void and String functions worked suc-
cessfully, but the more complex test
hung after processing one database
record and suggests not making
Microsoft’s Data Access Layer remote. In
addition, even if making these COM
objects worked easily in Java, the train-
ing issue for a Java developer to learn the
COM API for data access is knowledge
unlikely to be found in one person. Con-
sequently, the best design approach is to
return Strings or perhaps XML, simple
objects where possible, or domain busi-
ness objects that encapsulate and hide
Microsoft’s data access classes. Other
bridges may suggest other approaches.

Risks and Disadvantages
One risk to the above approach is the

dependence on the COM-Java bridge
that’s affected by the current lawsuit.
Microsoft plans to not support Java in
the future and will give Rational the
development of the virtual machine (see
“Microsoft, Rational strengthen ties on
Java development front,” www.zd-
net.com/ eweek/stories/gener-
al/0,11011, 1015701,00.html). Neverthe-
less, WebLogic’s support of the bridge
provides insurance from a major ven-
dor, and there are bridges not bound to
the Microsoft VM (see www.linar .com).

Another disadvantage is that some of
the features of the WebLogic Server can’t
be used. Because the Microsoft Java Vir-
tual Machine must be used in order to
use COM, clients can’t be standard Java
clients, which run on standard VMs,
although wrapping the EJBs as CORBA
objects would allow any client to access
them (see COM/ CORBA/EJB Integra-
tion below). Note: JSP technology can’t
be used because it requires a standard
usage of the classpath, that isn’t avail-
able on the Microsoft Virtual Machine.

Advantages
The WebLogic wrapper provides a

simple way to bridge COM and Java with
little or no programming. It provides a
stable application server, which provides
facilities for hosting distributed objects
and easing distributed development.

Detailed Implementation Steps
To provide the above solution,

WebLogic must run on the Microsoft
Java Virtual Machine. In addition, the
Microsoft SDK for Java (www.micro-
soft.com/java/default.htm) must be
installed on the machine. After installa-
tion, setting its classpath can be tricky,
so it’s worth noting that this is done in
the registry (HKEY_LOCAL_MACHINE\
Software\Microsoft\JavaVM\Class-
path). Some files can be automatically

Java COM

34 FEBRUARY 2001

added to the classpath and break the
WebLogic compiler. To correct the prob-
lem if it occurs, simply edit the registry
to remove these files from the classpath.

Configure the WebLogic environ-
ment file, setEnv.cmd, to use the
Microsoft compiler, then:
1. Create a new directory and copy Test-

Server.dll into it (e.g., C:\weblogic\
examples\com\testser)

2. Recompile COM object

jview weblogic.comc -nothreads –reg-

ister

c:\weblogic\exam-

ples\com\testser\TestServer.dll

3. Copy the created directory weblogic to
C:\weblogic\myserver\serverclasses

4. Add the interface, ItestInterface, to jvc
/d %CLIENT_CLASSES% Server-
SideTestServer.java and write some
code to use this interface

5. Restart Web server after adding prop-
erties:

weblogic.system.startupClass.test-

sertest=weblogic.com.remote.testserv-

er.ITestInterfaceImpl

weblogic.system.startupArgs.test-

sertest=TestServer

6. Run the above ServerSideTestServer
under the Microsoft Virtual Machine,
jvc examples.com. ServerSideTest-
Server

Design Issues
The above can provide a simple way

of integrating COM. Especially by using
String-level interfaces, XML can be
passed as a parameter thereby signifi-

cantly reducing program effort and
debugging. Restrictions exist because of
the need to use the Microsoft Virtual
Machine, making it more difficult to use
the full feature set of J2EE. Also, the pos-
sibility that SOAP may become a better
interface is worth noting. Nevertheless,
the need for a production quality solu-
tion currently favors a bridge.

Part III: COM/EJB/CORBA
Integration

In summary, these solutions can be
used together to provide a complete
COM-to-EJB-to-CORBA solution useful
in those situations where these three
object models need to be combined in
one solution. Each model provides par-
ticular benefits and may be linked to
certain legacy solutions in any given
environment. Certainly, COM allows
easy integration with Microsoft, EJB
provides ease of development and
portability, and CORBA provides inte-
gration benefits. More importantly, in
any environment there may be the pres-
ence of each model, and there may be a
requirement to integrate them all. So, it’s
worthwhile creating a framework for
integrating each model because some
loss of performance will be outweighed
by development and maintenance ben-
efits.

Performance is a problem with inte-
grating COM and CORBA through EJB.
However, although two servers exist
between the COM object (e.g., Test.dll)
and the Client objects, both compo-
nents are easily produced as described
below. Certainly, this trade-off favors
ease of development over performance.

But this solution then provides a bridge
between COM and any CORBA client
that’s highly flexible and can evolve with
future changes. Only environments with
all three of these technologies will bene-
fit from this integration, but by placing
EJB as the central standard, it simplifies
the other two integrations. Furthermore,
when RMI-IIOP becomes a standard,
the server hosting the CORBA wrapper
can be removed.

CORBA to COM
To enable CORBA to COM, a CORBA

client calls a wrapper or adapter to
access an EJB, which then calls COM.
Note that RMI-IIOP could be used
between CORBA and EJBs, but a more
versatile yet performative solution is to
utilize the wrapper. The CORBA wrapper
delegates any CORBA calls to the RMI
interface hosted by WebLogic and pro-
vides a fully interoperable solution. The
wrapper is essentially a client of
WebLogic and looks up the RMI inter-
face of the COM component and pro-
vides a remote interface to clients on
UNIX or NT. The CORBA interface or idl
can be developed manually by creating a
matching CORBA interface or by using
an automatic tool provided by Visigenic,
which can take a Java interface and pro-
duce idl (i.e., java2idl). Once the idl is
provided the delegation must be coded
directly, although this programming is
straightforward and could be generated
automatically if such a generator were
written. Note that by writing a simple
code generator that automatically gener-
ates the CORBA wrapper, no code would
need to be written for the bridge soft-
ware, which would improve the speed of
development and improve quality.

COM to CORBA
COM-to-CORBA communication

can be achieved by using the soon-to-
be-released CAS, COM to J2EE bridge
being developed by Sun, and then hav-
ing the EJBs call CORBA. Or WebLogic’s
bridge from COM to EJB can be used
and have the EJBs call CORBA. COM to
CORBA is in fact simpler than the oppo-
site direction, as would be expected
from details discussed above.

Design Issues
COM-to-CORBA communication is

enabled by having the COM object pre-
sented as an RMI/EJB object by the
WebLogic bridge, then a CORBA server
is written that wraps the RMI object and
provides a CORBA interface to any
client. CORBA-to-COM communication
is provided easily by having EJBs invoke
CORBA directly and by having a bridge
between EJB and COM.

E J B / C O R B A

FIGURE 1 Possible COM-to-EJB-to-CORBA integration. Windows NT hosts the
WebLogic application server on the Microsoft JVM and the CORBA server, which
connects to the WebLogic RMI object.

WebLogic Wraps COM
Component on
Windows NT

WebLogic TestServer

Test.dll

Corba Server Wraps RMI
Interface on Windows NT

Clients on
UNIX or NT

Client Client Client

RMI

 CORBA CORBA CORBA

Java COM

36 FEBRUARY 2001

The complexity of the interface can be a critical
factor in the above approach because a complex
interface requires larger amounts of code in the
CORBA wrapper. One possibility is to pass XML back
from the COM server through the CORBA wrapper,
perhaps a hybrid SOAP solution. Automating the cre-
ation, the CORBA wrapper can speed development.
A second solution is to build common domain busi-
ness objects and pass them through to WebLogic and
Java.

The selection of a particular bridge will be depen-
dent on platforms and overall configuration. If
WebLogic’s bridge is used, then the Microsoft VM will
be required, as it runs only on Windows NT. Other
bridges will have different requirements. However, an
EJB container does simplify many of the interoper-
ability issues by providing one standard to map both
CORBA and COM rather than mapping each standard
to the other, which would create six mappings:
CORBA to COM, CORBA to J2EE, and so on.

Conclusion
EJB, CORBA, and COM are different technologies

and are likely to persist in production environments.
Maintaining interoperability is essential for environ-
ments that have these technologies. A number of
issues have been discussed that show many of the
choices required for integrating these technologies.
Various trade-offs and advantages exist for different
approaches and tools, and any particular environ-
ment or configuration of software will favor a differ-
ent combination of these solutions.

sirl@mail.com

AUTHOR BIO
Sirl Davis is an assistant

director of IT at Dresdner
Kleinwort Benson, London.

He has a bachelor’s
degree in electrical

engineering/computer
science and an

MBA/finance with
PhD-level work in

information systems. His
experience includes

developing various finance
applications for trading,

risk, and data
warehousing utilizing Java

technology.

graphics from template files, data sources, and external graphic
resources.

A portion of Generator server is written in Java. When you install
Generator, the Java Runtime Engine (JRE) and Allaire JRun are also
installed to provide Generator with Java components to execute. Gen-
erator uses Java for two primary purposes: initiating generation and
acquiring data from external sources.

When initiating Generator, a Java Servlet engine allows Generator to
pass information to and from the Web server via the Java Servlet protocol.
Java and Java Servlets are used to trigger Generator from a Web server or
from the offline Generator application. Macromedia chose Java servlets
for their high performance, reliability, and flexibility. Like other Web serv-
er APIs, such as CGI and Netscape Server API (NSAPI), the Java Servlet API
from JavaSoft offers a way to extend the functionality of Web servers.

Generator offers flexibility to your Web application when accessing
Java data sources. Data can be directly accessed through a result set from
a SQL query passed through JDBC/ODBC, Java class files, or other formats.

Macromedia partners with leading technology companies that sup-
port Java to ensure that its authoring tools integrate with the latest
technologies and third-party solutions. In addition to its multiyear
partnerships with Sun and Allaire, Macromedia also has close relation-
ships with ATG, BEA, BroadVision, IBM, and Vignette to provide devel-
opment tool support for their Java solutions.

Macromedia is committed to the Java platform to ensure that its
developers can deliver the most effective and engaging Web content
possible using their technologies of choice, and can use Java wherever
it’s appropriate as they continue to define what the Web can be.

Macromedia and Java:
Serving the Best User Experience

–continued from page 7

Java COM

38 FEBRUARY 2001

alexr@fiorano.com

Although I’ve driven a car in at least 12
different countries on several continents,
I’ve never had a greater potential for road-
way dyslexia than I have here. Not only is
the Hebrew language foreign to my ears,
the script found on street signs is written
right-to-left (at least that’s what I’ve been
told) and doesn’t even remotely resemble
the Roman-based characters I’ve grown
quite fond of. Oh, and the Hebrew text is
generally followed by a second line of text
in Arabic. Hebrew with Arabic – my guess
is that it’s the highway department’s
answer to 128-bit encryption.

What do my language deficiencies have
to do with representing Enterprise Jav-
aBeans in the Unified Modeling Language
(UML)? Everyone needs a common method
to communicate thoughts and ideas. In
Israel the international language is, thank-
fully, English, which in many cases is the
third line of text hosted on road signs here.

But it doesn’t end there. As I present
Java 2 Enterprise Edition course instruc-
tion and discuss project strategies for
migrating existing proprietary application
server components to the J2EE architec-
ture, I speak freely in English as those who
speak native Hebrew, Russian, and French
listen and participate. It works because we
have English in common. But when it
comes to communicating software archi-
tectures and designs in general, and EJB
specifically, why do so many often resort
to “foreign” methodologies and syntaxes
or even choose to “grunt” instead?

Why Not UML?
From my vantage point, there’s been

an explosion in the use of UML. When we

all come from differing software develop-
ment backgrounds, we can make archi-
tecture and design work for us because
we have UML in common. But why do
some hesitate or even fail with UML?

Frankly, I believe that many start off
with good intentions to learn and use
UML. But because of work environments
that lack a reliable software process, capa-
ble engineers end up abandoning a stan-
dards-based modeling approach for the
“code by the seat of your pants”
antimethodology. Generally I’ve found
this is due to a lack of understanding
and/or commitment at the top. Because
they’ve never used or understood a soft-
ware process themselves, many managers
are all too willing to let their development
staff live with the pain. So for those of you
who think you need to be good looking to
be hired for an “Object Modeler” position
and that “Senior” is completely out of con-
text, you’d better visit your favorite online
bookstore and order a copy of Martin
Fowler’s UML Distilled (Addison-Wesley)
immediately following your plastic
surgery.

On the other hand, many of you are
completely sold on using a software
development process with UML, but
may find the cost prohibitive. True, the
cost of UML tools can be out of the
stratosphere, but there are options. At
least one of the leading UML vendors
has expressed willingness to configure
its product to fit your budget by unplug-
ging costly features such as round-trip
engineering. Granted, round-trip engi-
neering may sound appealing, but one
UML authority told me it shouldn’t be
used by organizations with a Capability

Maturity Model that’s less than Level 4
or 5 (www.sei.cmu.edu/cmm/).

Trying to maintain a set of object
architecture and design artifacts that are
perpetually synchronized with the source
code of a complex software system can
be a daunting task (with one exception
explained below). So why pay for a fea-
ture you may find too difficult to use?
And if you’re just looking for a way to try
out the various UML diagrams, there’s at
least one pure Java Open Source UML
tool, called Argo/UML, available free
of charge at http://argouml.tigris.org/.
Argo/UML has been somewhat limited in
the past, but has many more diagram
types in the latest version.

Whatever your budget, note that UML
is an understandable and generally con-
cise syntax. While there are a number of
diagram types – officially nine in all – most
of us will make good use of about four or
five. I recommend mastering at least use
case, collaboration, class, sequence, and a
combination of package and component
diagrams. Also useful for some stages of
design are state and activity diagrams. You
can take a phased approach to UML, per-
haps starting with use case and class dia-
grams, then adding a new diagram type as
you see fit. Also be aware that the software
development process you follow will
greatly influence which diagram types you
use and at what stage in a development
iteration you use them (see sidebar,
“When to Use UML Diagrams”).

But there are issues for those of us
who know UML and want to make it
work for our middle-tier, enterprise-
component development, namely Enter-
prise JavaBeans.

E J B H O M E

Finding common ground

WRITTEN BY
VAUGHN VERNON I

t’s a pleasure to be writing this article in the beautiful,
high-tech, Mediterranean city of Netanya, Israel. It’s
the evening after the first day of the workweek here –
Sunday, of course – in my current consulting engage-
ment. But working Sundays isn’t the only thing I’ve had
to get used to here.

Modeling Enterprise Java
Components with UML

40 FEBRUARY 2001

Modeling Enterprise JavaBeans in UML
Unfortunately, the UML doesn’t at

present support the expression of every
software idiom we need to use. While
there’s excellent support for the Java lan-
guage in general, and simple JavaBeans
components specifically, there’s current-
ly no standard definition of how to
model Enterprise JavaBeans in UML.
Granted, there are ways to model EJB in
UML, and as you’ll see, depending on
the tool you use, it might work out very
well. But the Enterprise JavaBeans archi-
tecture was specified well after the UML
was completed. Because it’s a complex
specification, there proved to be aspects
of the Enterprise JavaBeans component
architecture that the designers of the
UML didn’t previously consider. What
that spells for you and me is the potential
for UML modeling tools to be difficult to
use when designing EJBs. However, UML
designers exercised appropriate fore-
thought in these situations and built
extensibility features into the language
so it can grow into the tool it needs to be
for any given software model.

How will the UML be extended to
support Enterprise JavaBeans develop-
ment? The Enterprise JavaBeans Specifi-
cation version 1.1 stated under Appendix
A entitled Features deferred to future
releases: “We plan to enhance the sup-
port for Entities in the next major release
(EJB 2.0). We’re looking into the area of
use of the UML for the design and analy-
sis of Enterprise Beans applications.”

Unfortunately, the proposed final
draft of the version 2.0 specification
doesn’t even mention the UML. If previ-

ous performance is any indication of the
future, we can’t expect to see the next
specification for another year or so.
However, we may get an answer sooner
than that.

Java Specification Request
Number 26

It appears that the EJB specification
group has turned over the UML/EJB
specification to the Java Community
Process Program, who has assigned it a
specific Java Specification Request
number, JSR-026. I must emphasize the
words “it appears” because it’s actually
difficult to understand what’s happen-
ing with this whole subject. I’ve
attempted to contact a few members of
the JSR-026 Expert Group, including the
specification lead, but have failed to be
granted any insight into the progress
and status of the work accomplished
thus far. However, I can tell you which
Enterprise JavaBeans development
issues are being discussed.

In general the UML/EJB specification
will focus on creating extensions to the
UML that will allow tool and framework
vendors to provide standards-based
modeling capabilities and source code
synchronization facilities between the
UML and EJB implementations. While
the common round-trip engineering
features of many UML tools focus on
model-to-source-code synchronization,
a giant leap forward will be the definition
of standards for storing UML models in
the EJB–JAR file and associating the
model components with the actual soft-
ware components they represent.

Companies creating reusable EJB
components will then be able to bundle
UML models of their components to
permit tool and framework vendors to
use their models to automate the con-
sumer’s use of the components. Perhaps
some component development organi-
zations are already shipping UML mod-
els to their customers, but likely such
models are supported by only a single
UML tool vendor. The real strength
behind standardizing an EJB–JAR UML
model archive is to allow all models to
be read by any number of standards-
based tools and frameworks. Thus, the
UML models become just as open and
reusable as the Enterprise JavaBeans
components they represent.

So we’re really talking about empow-
ering both EJB component vendors and
EJB component consumers, which will
become increasingly separate camps
over the next few years. EJB component
vendors will have the tools they need to
rapidly develop and deploy server-side
components using UML-based tools
that understand the logical and physical
EJB constructs to UML model elements,
including sophisticated and vastly im-
proved round-trip engineering facilities.
Once the EJB components and UML
model bundles are delivered to the
component consumer/customer, he or
she is empowered to quickly examine
the server-side object model diagrams
and use them to define relationships
between their newly acquired EJBs and
their existing software. Hopefully with a
few drags and drops and some relatively
simple glue code, the new components
will soon be in live production!

E J B H O M E

W hile anyone can learn to draw pictures of software, it’s
sometimes when you draw them that matters most. One
failure of many books about UML is that they spend a lot of

time dissecting the syntax into excruciating detail, but they don’t really
teach you when the various diagrams should be used. Be aware that the
software development process you follow will greatly influence which dia-
gram types you use, and at what stage in an iteration you use them.
Therefore, I can’t provide absolute direction, only some general guide-
lines based on my own and others’ experience.

Many teams are finding success using an iterative software develop-
ment process. By iterative I mean that relatively small chunks of software
are created in relatively brief development cycles. Once a small software
deliverable is defined, a cycle called an iteration or “timebox” is begun.
Upon successful completion of the iteration, a release is performed. Then
another small software deliverable that may complement a previous itera-
tion is performed. After each iteration is integrated into the release, soft-
ware testing can begin on the latest deliverable. At some point enough iter-
ations will be complete and stable enough to constitute a product ready for
alpha and beta test, and eventually final release.

• Step1:
Use Case Diagrams: At the beginning of the product conception stage, the
nontechnical and technical teams will merge to perform some high-level
requirements analysis and create a product vision document. Following full
consensus, the same team will work together to create perhaps 10–12 high-
level use cases that clearly define the product’s intended use. At this point
both text documents and UML use case diagrams can be used to fully express
the product’s requirements. Then, the first development iteration begins. The
test team will use the use cases to begin developing a test plan, while at the
same time the development team will use the use cases to create lower-level
use cases for defining software requirements. The resulting software require-
ments can then be shared with the test team to help flesh out their test plan
into test requirements. Many times this work will be performed in unison.

• Step 2:
Collaboration Diagrams: Following the use case portion of the itera-
tion, collaboration diagrams can be created to look at the behavior
among the various objects in a single use case (one bubble, most like-
ly including any directly accessing actor). At this point things are
becoming more concrete. We’re transitioning from relatively high-level
models to the discovery of which objects will be alive inside a use case,
and what method invocations cause the collaborations.

When to Use UML Diagrams

Java COM

—continued on page 42

Java COM

42 FEBRUARY 2001

One of the JSR-026 Expert Group
deliverables is an XML DTD (Document
Type Definition) describing the valid
format for the UML models housed in
the EJB–JAR file and the relationship of
model elements to EJBs in the same
deployment file. The UML model file
stored in the EJB–JAR will be XMI, an
XML-based definition designed to facili-
tate the storage of UML models in an
open, vendor-neutral format.

It appears that JSR-026 won’t be fully
incorporated into the EJB specification
until, perhaps, version 3.0. Since JSR-
026 deals with issues of deployment, the
UML/EJB specification may not be pro-
vided until there’s some resolution to
standardizing deployment of a single
EJB–JAR file to any number of compliant
servers. On the other hand, the Expert
Group may release a specification be-
fore you’ve read this article. You can
check on the progress of the specifica-
tion by navigating to this Sun URL:
http://java.sun.com/aboutJava/com-
munityprocess/jsr/jsr_026_uml.html.
Either way, we need to model server-
side components. So what can be done
at the present time?

Together Control Center
The JSR-026 home page states con-

cern over vendors who will use propri-
etary scaffolding to host EJB modeling in
the UML tools. In the long run we’ll be
happy if all UML tool vendors implement
their EJB wiring according to specifica-
tion. But in the meantime I’m more than

happy to make use of whatever’s avail-
able to help me get my work done. And
Together Control Center from Together-
Soft is one of those tools. Together Con-
trol Center is a top-of-the-line product
for Java-based modeling and does an
excellent job of supporting the creation
and deployment of Enterprise JavaBeans
to a variety of servers. From the quality of
their proprietary EJB modeling tools, I
believe that TogetherSoft will have little
trouble moving to a specification-con-
forming edition, that is, once the JSR-026
Expert Group catches up to them.

If you’ve ever developed an Enter-
prise JavaBean, you know there are a lot
of parts to keep track of. If you’re creat-
ing a session bean, you have three Java
source files to maintain – the remote
and home interfaces and the bean’s
implementation class. If you’re creating
an entity bean, you’ll have to add anoth-
er file to support your entity’s primary
key if the primary key is too complex to
be represented by a Java String or a
java.lang wrapper class (e.g., Integer).
Just making sure all your remote and
home interface methods are properly
implemented in your bean class can be
challenging. Add to that the creation of
the ejb-jar.xml deployment descriptor
as well as server-specific deployment
descriptors for resource management
and object-relational database map-
ping, and you realize there’s plenty of
room for error.

Together Control Center helps sim-
plify EJB development. While you still
have to create all the files you did before,

Together Control Center minimizes the
number of errors you can produce. Most
useful is the UML class diagramming for
EJBs. Two toolbar buttons support EJBs
– one for session beans and one for enti-
ty beans. Let’s take, for example, the Ses-
sion EJB button. If you click the button
and then click the diagram, a UML class
element representing your EJB session
bean’s implementation class appears.
Automatically generated for you is the
bean’s SessionContext instance variable,
as well as the setSessionContext(),
ejbActivate(), ejbPassivate(), and ejbRe-
move() methods, and a default ejbCre-
ate() method.

As you add elements to the class,
such as new business methods, you may
not realize what’s being done for you in
the background. If a newly added ele-
ment has a corresponding element that
must be synchronized with the remote
or home interface, Together Control
Center automatically adds the element
to the proper interface. For example, if I
add a business method named
getUsersByAccountId(), the same
method definition will be added to the
bean’s remote interface. Adding a new
ejbCreate() method, say, with an initial-
ization parameter or two, adds a corre-
sponding create() method definition to
the bean’s home interface.

By default you don’t see the EJB’s
home and remote interfaces, only the
implementation class. That’s great when
you’re first designing your component. By
hiding the remote and home interfaces
you save a lot of diagram real estate, and

E J B H O M E

• Step 3:
Class Diagrams: While collaboration diagrams introduce objects, they
generally indicate very little about static relationships between the col-
laborating objects. Static relationships defined in class diagrams include
object types and super types, special interface implementations, navi-
gation and dependencies, how the objects are composed and aggre-
gated, and what additional properties and methods must be created to
support the real world. At this point most developers are itching to cut
the code. But if you’re just a little more patient it will pay off.

• Step 4:
Sequence Diagrams: Class diagrams are among the static diagrams
because they don’t indicate behavior, only compositional relationships.
Collaboration diagrams are good for discovering new objects, but
they’re not so good at documenting collaboration sequence. In fact,
sequence can get a little hairy in them. But sequence diagrams are great
for defining the interaction between objects of various types at the
method invocation level. By providing sequence diagrams of your object
interactions you’ll be able to analyze your class designs before the code
is cut, and provide clear direction to those who actually write the code.

• Step 5:
Package and Component Diagrams: Now you need a place to house
the classes you’ve defined. Package and component diagrams are used
to define object dependencies and relationships at a much higher level

than class diagrams. Actually there’s really no such thing as a package dia-
gram, per se. Rather, you can “invent” package diagrams by inserting
package icons with interpackage relationships and nested packages on a
static structure diagram (class). Package diagrams can map one-to-one
into Java class packages. A single component object in a component dia-
gram can map one-to-one to a single Enterprise JavaBean and define its
navigable dependency on other middle-tier components. Use these dia-
grams to help your team understand how the current iteration will be
packaged and how it can be snapped together and deployed with existing
software from previous iterations.

If you hand over a set of well-defined collaboration, class, sequence,
package, and component diagrams to an experienced group of program-
mers, they’ll have little if any question of how the iteration must be coded
and deployed.

But what about the software architect’s role? Actually the architect’s role
will begin in Step 1. A single architect or group of architects could be called
on soon after the product requirements are completed, since at that time the
target platform(s) have been defined. A system architecture will be created
even before the first development iteration begins. The resulting architecture
document won’t be limited to a single type of UML diagram since it’s impos-
sible to express a complete architecture using a single kind of modeling dia-
gram. While it’s out of the scope of this sidebar text to explain how to pro-
vide a complete architecture document, you should consider reading about
the 4+1 View Model approach to software architecture on www.rational.
com/products/whitepapers/350.jsp.

—continued from page 40

Java COM

44 FEBRUARY 2001

E J B H O M E

vvernon@vergecorp.com

you’re less distracted by the additional
pieces. However, when I start to define my
client-side classes, such as one support-
ing the Verge EJB Client Design Pattern (a

wrapper class that hides the details of the
J2EE/EJB APIs and other extras necessary
for client interaction), I prefer to model
the client by showing navigation depen-
dencies to the remote and home inter-
faces as opposed to showing the client
conversing directly with the EJB imple-
mentation class (which in fact it can’t do).

To make the remote and home inter-
faces visible, you simply use the View/
Diagram View Management… proper-
ties sheet to toggle the EJB view settings.
Figure 1 shows the results of just a few
minutes of EJB modeling with Together
Control Center.

In addition to adding a new business
method or ejbCreate() method, you can
add the standard EJB deployment refer-

ences for environment, bean, security
role, and resources. In Figure 1 I’ve
added a special bean environment entry
named “allowASPAccounts” as a
Boolean. If you’re setting up special
transaction attributes and security roles,
you may want to make use of the special
EJB Assembly Diagram provided by
TogetherSoft as a proprietary UML
extension. As you can see in Figure 2, the
assembly diagram states that “Any-
User” can open() an account and query
for allowASPAccounts() support, but
you must be an “AccountAdmin” to ter-
minate() an account. It also sets the
required transaction attribute for the
open() and terminate() methods, but
states that allowASPAccounts() supports
transactions but never initiates one.

Time and space don’t permit me to
delve much deeper into Together Con-
trol Center, but one last feature I must
mention, which by the way isn’t specific
to EJB, is the unique round-trip engi-
neering capabilities of Together’s prod-
uct line. There’s no need to synchronize
your source code to your model, or your
model to your source code, because
your Java source code is your model’s
archive. When you create a new class in
Together Control Center, it generates a
Java source file automatically. If you
then vastly alter this Java source file
using a programmer editor, save your
changes, and return to Together Control
Center, your changes are immediately
reflected in your model. In fact, a major
strength of Together’s products is that
you can actually use them as your devel-
opment environment. TogetherSoft calls
this unique feature OneSource Simulta-
neous Round-Trip Engineering.

You can try out Together Whiteboard
edition for free without any size or time
limits by downloading it from http://
togethersoft.com. The Whiteboard edi-
tion is limited to only class diagrams,
but includes all the basic IDE features of
the full product and GoF (Gang of Four)
and other design pattern plug-ins.

Deploy on JBoss/Server
In conclusion I’d like to shift gears a

little and tell you about one of my
favorite Java 2 Enterprise Edition sub-
jects of late. It’s the JBoss Open Source
Enterprise JavaBeans Server project
(www.jboss.org). I started using JBoss
last July and found it to be a fascinating-
ly wonderful product! The contributors
to the JBoss project have produced a
truly first-class EJB server and container.
Last summer as I evaluated the code
drops that eventually led to the recent
JBoss version 2.0 product suite release, I
thought I’d stumbled onto something

worthwhile. Having been described as
“coders on steroids,” the JBoss team, led
by Marc Fleury and Rickard Öberg, has
produced an incredible amount of solid
code in a relatively short period of time.
But they’re not just coding. The develop-
ers do such a good job of managing the
support forums that they’ve attracted an
additional bunch of helpful contributors
to the project. Personally, I’d like to
thank Darius Davidavicius of Lithuania
and Torsten Terp of Denmark for
patiently helping me create an Oracle
data source for JBoss/Server.

As you’re probably guessing, all is not
perfect. I didn’t struggle with the data
source creation for no reason. There are
some serious holes in the bowels of the
JBoss documentation. And while there
are already EJB 2.0 features cropping up
(such as a recent preliminary imple-
mentation of message-driven beans),
how long can a group like this go on
without some nontechnical assistance?
A large-scale project like this will even-
tually begin to have some large-scale
needs. In the spirit of the Linux and
Apache projects, I believe that a project
of JBoss’ magnitude is a natural fit for
large-scale financial support.

Recently the aforementioned Darius
reported that JBoss/Server is outper-
forming the market’s leading EJB server
by over 20% as both servers run his
deployed code side-by-side. When you
consider that non-e-commerce, three-
tier applications are beginning to be
sold into business enterprises on CD-
ROMs with EJB servers as the infrastruc-
ture, JBoss/Server has removed the per-
CPU licensing barriers to those markets.
Our Israeli client is a testimony to that,
and they’re using JBoss for that very rea-
son. Add to that the array of business-to-
enterprise start-ups coming down the
pike and the millions of dollars that can
be saved on developer and deployment
licenses. What could that be worth?

Of course, there’s always going to be a
place for the market-leading, top-priced
EJB application servers. It’s a given, the
same given that some variety of Win-
dows is still outselling Linux by a long
shot. But just as there’s a place for Linux,
there’s a place for JBoss. In the short term
I’d at least like to see TogetherSoft create
an EJB deployment interface for JBoss.

At a minimum, I recommend you
download the JBoss product suite if you
haven’t already done so. See if you don’t
agree that it’s one of the tightest, well-
architected pieces of software you’ve
used in a long time. If so, think about
contributing in some way to the effort,
either technically or otherwise.

FIGURE 1 A UML class diagram of a simple
account session bean using Together Control Center

FIGURE 2 An EJB assembly diagram specific to
Together Control Center

AnyUser

Supports

Required

MethodPermission

MethodPermission

AccountAdmin

AUTHOR BIO
Vaughn Vernon is a

principal Enterprise Java
architect with Verge

Technologies Group, Inc.
(www.vergecorp.com). He

has 18 years of experience
in software architecture,

design, and development
with a focus on the use

of industry-standard,
leading-edge, object-oriented
technologies, including J2EE

and UML.Verge is a
Boulder, Colorado–based

firm specializing in
e-business solutions with

Enterprise JavaBeans.

Java COM

46 FEBRUARY 2001

alexr@fiorano.com

I’m also cheap. Folks who know me
will tell you they’ve seen me pick up
pennies from the street, but this is sim-
ply untrue. I stoop for nickels and dimes
when people are nearby. Pennies I
always walk past and fetch afterwards
when no one is looking. By the way, this
is a secret I’d like kept between you and
me, okay?

There’s something else. The past 10
years of travel have left me feeling a bit
like a journeyman craftsman, not too
unlike a coppersmith of old who trav-
eled from town to town plying his trade
and wares. Given this trait, I tend to
gravitate toward things that are light-
weight and portable – the more, the bet-
ter.

These particular attributes came to
the surface recently when I had to per-
form a volume test against a servlet-
based application I’d written. I wanted
to get a feeling for the behavior of sever-
al key pooling components and how
they fared under stress without going
through a lot of trouble or expense.

So I went looking for an existing
solution in that great ether we call the
Internet and which I have occasionally,
in a less charitable frame of mind,
referred to as the great flotsam.

HTTP Driver Criteria
My criteria were simple. What I need-

ed had to meet three basic require-
ments. First, because I’m a simpleton,
the solution had to be easy to set up and
use.

Second, it had to be economical
because, remember, I’m cheap and did-
n’t want to spend a lot of time or money.

Finally, I preferred a solution that

was reasonably portable. I didn’t want
something I would have to make or go
through a lot of trouble setting up and
reconfiguring every time I moved to a
different environment.

So with those requirements in mind,
I spent some time looking around for
anything that appeared promising; I felt
pretty sure, within an hour or so, that I’d
run across an acceptable solution. How-
ever, and a bit to my annoyance, I came
up empty-handed.

Well, that’s not exactly true, because I
did find other folks who were interested
in the same thing, and I found refer-
ences to commercial products, a few of
which I’d worked with in the past.

But given my criteria (simple, cheap,
portable), I decided I’d looked around
enough. So, sitting back in a huff, I con-
sidered my options:
1. Give the app to the end users as is

and hope it works
2. Hire and train some chimpanzees to

do the volume tests
3. Quit, move to another country, and

hope no one comes looking for me

Option 1 had seldom worked in the
past and, given the number of times I’d
tried this approach, odds weren’t good
that it would be any different this time.
On the surface, option 2 seemed to have
some merit until I recalled the energy
expended training another primate
more closely related to me, namely, my
son. Option 3 was out of the question
because they always come looking for
you, wherever you run.

Deciding I was out of alternatives
and the need to do a volume test wasn’t
going away, I decided to take a more
pragmatic approach and try to come up

with something on my own.
After a bit of doodling I decided that

with a little effort, a viable solution was
possible in Java that would meet two of
my requirements. First, developing the
solution in Java would give me the
portability I was looking for. Second, the
richness of Java would provide me a
level of abstraction that would remove
me from the grittier aspects of, say, sock-
et programming details. Java’s richness
would also lend itself to the economies
of time and expense I was looking for.
However, the “simple, easy to use”
requirement would be up to me.

J A V A & H T T P

Journeyman’s HTTP Driver

WRITTEN BY
MARC CONNOLLY

Generate HTTP traffic

I
f you were to consider all the surface clutter in my life, you
might find it strange to know, deep down inside, I like things
simple. I mean really simple, because I’m not very bright and
have trouble with basic concepts, like getting out of bed and
getting the car pointed in the right direction on Monday
mornings.

FIGURE 1 UML diagram

HTTPDriver

HTTPSubDriver

URLProcessor

1

1..*

1

1

Class Diagram

Java COM

48 FEBRUARY 2001

HTTP Driver Solution
The end result was a trivial Java-

based application employing sockets
and threads to issue multiple HTTP
requests – and process responses –
repetitively, against one or more HTTP
servers. Roughly speaking, the applica-
tion can simulate the activity of many
users.

The structure of the application is
quite simple (see Figure 1).

The application is composed of three
classes – HTTPDriver, HTTPSubDriver
(which extends Thread), and URL-
Processor. HTTPDriver creates one or
more instances of HTTPSubDriver, each
of which, in turn, creates a single
instance of URLProcessor. An instance
of HTTPSubDriver is analogous to a sin-
gle user, while the URLProcessor could
be thought of as the repetitive serial
actions (“click stream,” if you prefer)
taken by that user.

Initially, HTTPDriver’s main purpose
is to read at least two parameters. The
first indicates how long HTTPDriver is to
run. The second specifies the location of
another file that contains information
on the number of “users” (HTTPSub-
Driver instances) to create and the run-
time details for each.

For example, HTTPDriver could be
invoked as follows:

java HTTPDriver 20 subDriverDefs.txt

The first parameter, 20, indicates the
maximum amount of time the entire
process is to run. The invocation of
HTTPDriver would run for a maximum

of 20 minutes. The second parameter is
the name of a file that contains a list of
“users” definitions or, more precisely,
HTTPSubDriver definitions.

HTTPDriver always produces a log
that, by default, is called HTTPDriver.log
and is created in the current directory.
You could, however, override that by
supplying an alternative log file. For
instance:

java HTTPDriver 20 subDriverDefs.txt

\tmp\HTTPDriver.log

Again, each user is represented by an
instance of HTTPSubDriver with its own
set of parameters. Using the preceding
command line invocation as an exam-
ple, the parameters for the HTTPSub-
Driver instances would have been in the
file called subDriverDefs.txt.

These parameters convey, for exam-
ple, the subDriver’s own individual run-
time (which could be less than HTTP-
Driver itself), its sleep time, the file con-
taining the list of URLs to be processed,
and the maximum number of passes
URLProcessor is permitted to make
upon that file within the time HTTPSub-
Driver has been allotted to run.

Using the preceding command line
invocation as an example, sub-
DriverDefs.txt could contain something
like this:

TEST_1 1 10 www.dev.com:80

EchoServlet.txt 3 2000

TEST_2 10 15 www.acp.com:80 empSe-

lect.txt 9 4000

DML_1 5 3 www.dev.com:80

EmpDML1.txt 8 2000

DML_2 1 10 www.dev.com:80

EmpDML2.txt 7 2000

Each line represents the parameters
for a single instance of HTTPSubDriver.
The first parameter is an arbitrary tag
that HTTPSubDriver uses whenever it
writes to the log. The second parameter
is the maximum runtime, in minutes,
the HTTPSubDriver instance is to exe-
cute, while the third parameter specifies
the HTTPSubDriver’s sleep interval in
seconds.

As you can probably deduce, the
fourth parameter is the host and port of
the HTTP server against which the
requests will be directed and the
responses read from. Note in the example
I have www.dev.com and www.acp.com
specified, presumably referencing two
different hosts. There’s nothing to stop
you from driving traffic to different hosts
within the same HTTPDriver instance.

The fifth parameter is the name of a
file containing the list of one or more
URLs (more on these later) to process.

The sixth parameter indicates the maxi-
mum number of passes the URLProces-
sor can make on that file. The seventh
and final parameter is the size of a char-
acter buffer into which segments of the
response stream are read.

Now that was a mouthful but, again,
the implementation is quite simple:
HTTPDriver creates one or more HTTP-
SubDrivers, each of which creates a
URLProcessor to do the work (see Fig-
ure 2).

Internal Structure
Let’s look at some of the code at a

high level. As part of its initialization,
HTTPDriver creates a Vector on its
HTTPSubDriver instances to monitor
and control the instances collectively:

private Vector threadPool =

new Vector();

As each HTTPSubDriver instance is
created, its handle is added to the
Vector:

threadPool.add

(new HTTPSubDriver(

subDriverId

,subDriverRuntime

,subDriverSleepTime

,hostAndPort

,subDriverInputFile

,maxInputFileIterations

,httpResponseBufferSize

,logTimestampFormat

));

During its instantiation, HTTPSub-
Driver creates an instance of URL-
Processor:

urlProcessor =

new URLProcessor

(subDriverId

,hostAndPort

,subDriverInputFile

,maxInputFileIterations

,httpResponseBufferSize

,logTimestampFormat);

After HTTPDriver has created all the
HTTPSubDriver instances, it marks
them as daemons and starts them:

for (int i=0;

i<threadPool.size();

i++)

{

HTTPSubDriver httpSubDriver =

(HTTPSubDriver)

threadPool.elementAt(i);

httpSubDriver.setDaemon(true);

httpSubDriver.start();

}

J A V A & H T T P

FIGURE 2 One HTTPDriver instance with three HTTP
SubDriver instances

HTTPDriver HTTPSubDriver

HTTPSubDriver

HTTPSubDriver

URLProcessor

URLProcessor

URLProcessor

HTTP server

HTTP server

Java COM

50 FEBRUARY 2001

J A V A & H T T P
Remember, as each HTTPSubDriver

was created, an instance of URLProces-
sor was also created. Generally speaking,
URLProcessor reads the file it was given
that contains a list of URLs. For each URL
encountered, URLProcessor opens a
socket to the server, writes the request,
waits for and then reads the response,
and finally closes the socket. URLProces-
sor does this one request after another.
The requests can be any valid HTTP
method but were typically GET and POST
in my case. There’s nothing to stop you
from including other methods, such as
HEAD, DELETE, OPTIONS, or so forth, in
the list of URLs. PUT would require a few
extra lines of code, however, similar to
the way FORM data handling is
described below.

URLProcessor recognizes two for-
mats:

{Method} {URL} HTTP-version

or

{Method} {URL} HTTP-version FORMTA={}

where FORMDATA has the following
format:

keyWord1=value1&keyWord2=value2...

A typical file containing a list of URLs

might contain many entries and will
look something like this:

GET /dev/servlets/Login HTTP/1.0

GET /TFGreenOnBlack.jpg HTTP/1.0

GET /stylesheet.css HTTP/1.0

GET /applets/MenuManager.jar HTTP/1.0

POST /dev/servlets/Login HTTP/1.0

FORMDATA=userId=Frank&userPswd=Zappa

Note the FORMDATA literal in the
last sample line. This is a keyword that
URLProcessor looks for to determine
whether there’s any FORM data to be
appended to the request as its entity
body.

With the exception of the last line,
this sample looks very much like a typi-
cal HTTP server’s access log. Also note
that if you wanted to gather the “click
stream” of a particular application, the
HTTP server’s access log would be an
ideal source to begin with. Or you could
do something similar to what I did.
Within my application I embedded two
fragments in the doGet and doPost
methods, respectively, which enabled
me to quickly generate “click streams”
for playing back through HTTPDriver.
I’ve since folded those fragments into an
existing general utility class reducing the
code to a single line in each method.

URLProcessor’s next() method is
where all the activity happens and

where the requests to the HTTP server
are issued and the responses handled.
URLProcessor is responsible for reading
each URL from the list, forming the
request, creating a socket to write the
request stream to, and subsequently
reading the response stream from. After
each request is written and its response
completely read, the socket is closed –
indirectly by a .close() on the response
stream – and a relative response time
duration is calculated and logged.

This repetitive process is governed
by dispatching each instance of
HTTPSubDriver. As each instance is dis-
patched, it invokes its URLProcessor’s
next() method and continues to do so
until interrupted.

As it runs, HTTPDriver periodically
examines the state of all the HTTPSub-
Drivers it created:

while(System.currentTimeMillis()

< driverStopTime)

{

logMessage

("Current Elapsed Runtime: "

+

(System.currentTimeMillis()

- driverStartTime)

/ 1000 + " seconds");

if (backgroundThreadsActive())

{

Thread.sleep(10000);// 10s

Java COM

52 FEBRUARY 2001

J A V A & H T T P
}

else

{

logMessage

("All background threads

are inactive");

break;

}

}

If all of the HTTPSubDriver instances
are no longer active, HTTPDriver closes
its log file and terminates. That’s it. As
you can see by this description, the
entire process is fairly straightforward.

Runtime Considerations
There are a few things you should

consider.
Remember when I said that this solu-

tion can simulate, roughly speaking, the
activity of many users? Well, I qualified the
statement for a reason. If you think about
the nature of this application’s structure
and implementation, you’ll recognize
some limitations. For instance, we’re try-
ing to approximate the behavior of multi-
ple users, but what happens if we run a
single instance of HTTPDriver with 20
HTTPSubDriver instances – that is, 20
users?

First off, the runnable queue could
get quite long, potentially elongating the

duration between dispatch for some
threads. This problem could be pro-
nounced if your environment is not con-
ducive to parallelism – for example, run-
ning in a single CPU configuration or
using green threads, which is the default
behavior. The implications of this prob-
lem are such that some of the HTTPSub-
Driver instances might not get dis-
patched frequently or long enough to do
anything substantive.

Compounding the issue of a long
runnable queue could be the interwo-
ven effects of normal thread blocking,
for instance, on socket read waits. Mak-
ing things further problematic, I’ve set
each HTTPSubDriver thread to Thread.
NORM_PRIORITY and haven’t consid-
ered systems where time slicing may not
be supported. For example, I didn’t
implement yield() in the construction of
run() in HTTPSubDriver.

Something else to think about would
be network congestion along the routes
taken by this application. But more
important would be the congestion at
the point of origin – in other words,
where HTTPDriver is running. For
instance, in my tests, when I ran a single
instance of HTTPDriver from one
machine using 10 HTTPSubDriver defi-
nitions, the behavior was adequate.
However, when I started multiple
instances – three in my case – of HTTP-

Driver on the same machine, each with
10 HTTPSubDriver definitions, things
got a bit slow. Aside from the fact that I
was running on a single CPU, I was
choking my NIC.

By reworking the test configuration
(two HTTPDrivers, each with six HTTP-
SubDriver instances per machine) across
several “client” machines, I got a reason-
able amount of traffic resembling the tran-
sit/response times of a single instance of
HTTPDriver on a single machine.

These observations about runnable
queue length and network congestion
yield a key practical consideration in
the application of this solution: having
an environment where the test work-
load can be distributed effectively is
ideal.

Summary
It should be evident by now that what

I’ve described is a trivial solution to a
common requirement and is not intend-
ed to be a commercial-grade substitute.
This solution does, however, have bene-
fits for those of us seeking a portable,
economical, and effective means for
generating HTTP traffic without having
to employ and train chimpanzees – or
leave the country in hurry.

marc.connolly@oracle.com

AUTHOR BIO
Marc Connolly is by

trade a programmer.
Currently working

for Oracle
Corporation, he has
worked for various

companies, large and
small, over the past 20

years. His focus has
been primarily in product

development for and
with relational databases

with occasional forays
into stranger venues.

Next Month in JDJ…
The Java Message Service
What is JMS and where did it come from?
by Dave Chappell

Using the Java Platform
Debugger Architecture
by Tony Loton

Power JMS
Applying the facade pattern to JMS using a
custom protocol handler
by Tarak Modi

Product Review:
DeployDirector 1.3
by Sitraka Software (formerly KL Group)
by Joe Mitchko

How to Build a Telephone/Voice
Portal with Java Phonelets
Part 1 of 2
by Kent V. Klinner III and Dale Walker

Java COM

54 FEBRUARY 2001

Today most organizations are trying
to come to terms with the new age of the
Internet and e-commerce. Large estab-
lished companies see this as necessary
for survival, while smaller companies
view it as an opportunity to expand in
markets that aren’t confined by geo-
graphical location or budgetary con-
straints. The Internet and, increasingly,
wireless communications (telephony or
otherwise) are considered the future of
business. Companies must be able to
embrace this new economy to survive or
prosper. Increasing reliance on the
Internet is driving the uptake of tech-
nologies that support the development
and deployment of Internet-enabled
applications.

Predominant is Java. In all its
forms. Java is clearly the preferred pro-
gramming language of the Internet
and, in the form of Enterprise Java-
Beans, is now set to dominate server-
side applications.

J2EE, which encompasses Enterprise
JavaBeans (EJBs), JavaServer Pages (JSP),
Java Mail, Java Servlets, and so on, is the
governing standard for Java-based,
Internet-enabled applications (although
proponents of Microsoft’s .NET architec-
ture may disagree with this generality).
The numerous J2EE Application Server
products now available provide excellent
tools and support for developing and
deploying new Internet-enabled Java
applications. These products are likely to
become even more innovative and
usable as vendors compete for mind and
market share in what’s currently a very
crowded marketplace.

Although J2EE application servers
are excellent products in their own
right, they’re not the silver bullet their
vendors would like us to think they are.
The J2EE view of the world assumes that
everything is developed in Java – which
is great if you’re developing new sys-
tems from scratch. But who’s really in
this position? Who can simply ignore
and throw away the many years of effort
and money spent building existing
applications?

As we all know from the problems
encountered by “e-tailers,” a fancy front-
end Web site is no longer good enough.
Web sites must be fully integrated with
the back-end business systems such as
order processing, warehousing, logis-
tics, customer care, and so on in order to
fulfill the customer’s requirements
quickly and effectively. In the vast
majority of cases these systems are not
written in Java (or as EJB applications)
and therefore don’t fit easily into the
world of J2EE.

The question facing enterprise archi-
tects is: How do you integrate the new
EJB applications with a legacy COBOL
program running on an IBM/390?
Before we try to answer this, we’ll look at
another integration technology.

CORBA
CORBA was designed for integrating

applications in heterogeneous environ-
ments, that is, environments containing
applications written in different pro-
gramming languages running on differ-
ent operating systems and different

machines. In other words CORBA was
designed specifically to address the inte-
gration problems faced in a typical IT
environment!

CORBA achieves this level of inter-
operability by specifying program inter-
faces in an implementation-neutral
interface definition language (IDL). IDL
can be mapped to almost any required
programming language (C, C++, FOR-
TRAN, COBOL, Ada, etc.), allowing you
to develop your programs in the lan-
guage of your choice. CORBA also spec-
ifies the Internet Inter-ORB Protocol
(IIOP) as a common communications
protocol for TCP/IP networks. Just as
IDL hides programming language dif-
ferences, IIOP enables different appli-
cations to communicate with each
other through a standard protocol and
hides platform and network differences.

Because CORBA is a much more
mature standard than J2EE (CORBA has
been around for more than 10 years), it
has addressed many of the issues facing
the integration of enterprise-scale sys-
tems. For example, allowing applications
to interoperate using just the abstractions
provided by IDL and IIOP isn’t true inte-
gration. True integration occurs when
applications can participate in the same
transaction, share the same directory ser-
vices, and use the same security model.
For example, if CORBA-based applica-
tions are to participate in the same trans-
action, they need to know the transaction
context. Fortunately, IIOP is designed to
implicitly propagate transaction and
security context information, allowing
remote objects to share this information.

C O R B A C O R N E R

Integration servers help fill the gap

WRITTEN BY
PAUL MOXON T

his article outlines how organizations can build and main-
tain an integrated system infrastructure to support their
business needs using open industry standards, such as
CORBA, Java 2 Enterprise Edition (J2EE), and XML. In
doing this, they can maximize investments in existing
technologies and integrate them in a powerful and flexible
way into new e-business systems.

Integrating CORBA and J2EE

Java COM

56 FEBRUARY 2001

C O R B A C O R N E R
The OMG has specified a number

of additional services to support the
core CORBA specification, including an
Object Transaction Service (OTS), a
Security Service, a Naming Service, and
an Event Service (now superseded by
the CORBA Notification Service). These
form a framework of supporting services
that are essential for large-scale systems
and are designed to promote true inte-
gration between applications rather
than just interoperability.

The Best of Both Worlds
Fortunately Sun recognized the

strengths and advantages offered by
CORBA and incorporated them into
J2EE. The J2EE specification requires
compliant application server products to
support RMI over IIOP as a transport
protocol, in addition to the Java-centric
Java Remote Method Protocol (JRMP).
With the implementation of RMI-IIOP,
Java RMI objects can be accessed by
CORBA objects written in another lan-
guage. Moreover, Java RMI objects can
access CORBA-based applications
regardless of what programming lan-
guage they were written in. This brings
the strengths of CORBA – cross-language
integration – to J2EE. J2EE Application
Servers also benefit from the industrial
strength of IIOP when used in large-scale
systems. It’s now widely accepted that
IIOP scales much better than JRMP, and
therefore provides a better protocol on
which to base enterprise developments.

J2EE support for transactions is pro-
vided by the Java Transaction Service
(JTS). The J2EE specification currently
recommends (in version 2.0, it
requires) the support of JTS layered on
top of the CORBA Object Transaction
Service. The use of OTS, and hence IIOP
as a communication protocol, supports
the interoperability of transactions
between application servers and legacy
applications.

J2EE leverages the strengths of
CORBA to make J2EE application servers
more robust and scalable and, at the
same time, provides a more productive

and simpler environment for developers.
CORBA is difficult for many developers,
one of the main hindrances to its main-
stream adoption. However, CORBA’s
weaknesses – such as the lack of a true
framework to support the rapid develop-
ment of applications – are the strengths
of J2EE. Together they make a formida-
ble package, as can be seen in Table 1.

Now return to the question facing
enterprise architects: How do you inte-
grate your new EJB application with a

COBOL program running on an
IBM/390? With the implementation of
RMI-IIOP, the EJBs can access CORBA-
based applications regardless of what
programming language they were writ-
ten in. So we can use an ORB that sup-
ports COBOL (e.g., IONA Technologies’
iPortal for OS/390) to provide the inter-
face to the COBOL application, and the
EJB can use RMI-IIOP to interoperate
with the application’s CORBA interface
and, via this interface, the COBOL appli-
cation itself.

Therefore, the combination of J2EE
to develop new Internet-enabled appli-
cations and CORBA to integrate these
applications with existing systems, pro-
vides a complete solution for integrating
enterprise systems…or does it?

Synchronous vs Asynchronous
Architectures

The type of integration we’ve dis-
cussed so far has been based on syn-
chronous interactions. That is, a request
is made to the target application (in the
form of a remote method invocation)
that processes the request and returns
any results. This request-reply mecha-
nism is simply the distributed form of a
method call to a local Java object. It
works well within a Java program con-
tained in the confines of a single JVM,
but doesn’t scale well when it spans
multiple JVMs or even non-Java applica-
tions. A synchronous – or closely cou-
pled – architecture can become fragile
when it’s made to grow this way. Appli-
cations become prone to slow perfor-

mance when the system works at the
speed of the slowest component, or
even deadlocks – applications end up in
a gridlock of requests waiting to com-
plete before subsequent operations can
be processed.

An alternative architecture that
avoids the pitfalls of closely coupled sys-
tems is an asynchronous – or loosely
coupled – system architecture. This
architecture decouples the applications
from directly interacting and uses a
messaging system as the “buffer.” The
messaging system supports guaranteed
delivery semantics (also called “store
and forward”) to ensure that messages
are received by the target applications.
This means that an application can send
a message, then continue to perform
other work, confident that the messag-
ing system will ensure delivery to the
intended recipient.

An application sends data to the
messaging system and then gets on with
its own internal functions – it doesn’t
need to know what other applications
receive that data, what methods are in
their APIs, or even if they’re currently
online. Similarly, changes can be made
to an application and its interface to the
infrastructure, or new applications can
be added, without affecting others.

For example, consider the situation
in which one application needs to send
data to 10 other applications. Using tra-
ditional EAI or just an ORB, the sending
application’s API needs to understand
the API “data write” methods of all 10
receiving applications to write the data.
If a receiving application’s API changes,
the method calls in all sending applica-
tions may also need to change. Using
messaging, the sending application
needs to know only one method: how
to send data to the messaging bus. If
other applications fail, change, or are
added, nothing changes for the sending
application.

This makes the overall system much
more flexible and resilient. To add
another application the system is
required to be integrated only into the
messaging architecture rather than
directly to each application that it inter-
acts with, reducing the number of inte-
gration points dramatically. The
decoupling also reduces the effect on
the system when an application fails. As
the messaging system acts as a buffer
between applications, the remaining
applications can continue to operate
and any messages destined for the
failed application will be queued until
it’s restored. Finally, with the messaging
system acting as a buffer between the
applications, they can all work at their
optimum speed. A slow application

CORBA J2EE

Distribution Strong Weak
- traditional CORBA area - RMI not scalable

- now use RMI-IIOP

Server Framework Weak Strong
- but Java only

Infrastructure Support Weak Strong
- but comprehensive set of services - leveraging CORBA Services

TABLE 1 J2EE and CORBA

58 FEBRUARY 2001

won’t affect the performance of the oth-
ers, because the messaging system will
store any messages until the slow appli-
cation can process them.

Despite these benefits of greater flex-
ibility, scalability, and robustness, asyn-
chronous architectures aren’t the solu-
tion to all problems. There are circum-
stances in which a synchronous
request-reply mechanism isn’t just the

best solution, it’s the only acceptable
one. Consider the case of a customer
making a purchase over the Internet
using a credit card. The resultant trans-
action must be processed there and
then, so the customer knows that the
purchase has been successfully com-
pleted and the vendor has the security of
a completed transaction.

This scenario requires a synchro-
nous request-reply interaction; an asyn-
chronous interaction wouldn’t be ac-
ceptable to the customer, who needs to
receive transaction reference informa-
tion (order number, transaction ID, etc.)
straightaway. Subsequent fulfillment of
the order may, however, be processed in
an asynchronous manner; this doesn’t
concern the customer, who has now

received the required reference infor-
mation in case of a problem later.

Therefore, a typical enterprise sys-
tem doesn’t consist of only closely cou-
pled synchronous integration, nor will
asynchronous messaging-based archi-
tecture meet all the requirements of
such a system. Enterprise-scale systems
require a mixture of the two types of

architecture, which has led to a new
generation of products called Integra-
tion Servers or Brokers that complement
J2EE Application Servers.

Integration Servers
Both application servers and integra-

tion servers are frequently used for inte-
gration. Application servers tend to be
used by developers building some new
part of an application’s functionality. They
support a closely coupled architecture
using a request-reply interaction and tend
to support fine-grained components.
Integration servers, on the other hand, are
focused toward integrating existing func-
tionality rather than developing new
applications. They’re based on a loosely
coupled architecture using asynchronous
messaging and support coarse-grained
integration. In this sense, application
servers and integration servers can be
seen as complementary (see Figure 1). The
application server provides a core deploy-
ment platform and tools for application
development, while the integration server
augments this with tools for application
and data integration, architecture abstrac-
tion, and technology and vendor “hiding”
layers. In most nontrivial projects, both
types of product will be required.

Figure 1 also illustrates the main
functional components of an integra-
tion server, namely:
• Message broker: Provides powerful

interapplication messaging function-
ality across multiple messaging mod-
els (e.g., CORBA, EJB, SOAP) and ven-
dor (e.g., IBM, TIBCO) solutions.

• Data transformation: Makes the
complex task of reconciling and using
disparate data formats much easier.

• Process modeling and automation
tool: The essential link between an
end user’s business processes and
OEM’s software applications and IT
infrastructure.

Let’s look at these main components
in more detail.

Message Broker
This is the “hub” of the integration

server. The message broker provides the
standards-based asynchronous messaging
capabilities that are essential in a loosely
coupled architecture. The key standards
for the message broker are CORBA, EJB
(JMS), and SOAP. The message broker
must also integrate to other messaging sys-
tems, such as IBM’s MQSeries and
TIBCO/Rendezvous, so that legacy appli-
cations using these products can be inte-
grated into the enterprise system.

The support for standards-based
messaging APIs allows developers to use

C O R B A C O R N E R

FIGURE 2 Integration server

Integration Server Technologies

Customers

Partners

B2B Exchange
Suppliers

Applications
Messaging
MQ Series

Microsoft MQ
JMS

Vitria

XML
Databases

Oracle
Sybase

Informix
SQL Server

Enterprise Applications
and Systems

The Extended Enterprise

Management
Tools

OpenFusion
Workflow Automator

OpenFusion
Data Transformation

MessageBroker

Messages over SOAPTransformations

Messaging Bridges

3rd Party J2EE App Server

Integrate

Asynchronous

Integration
Servers

Build

Synchronous

Application
Servers

Coarse-grained integration
through message passing and
data transformation

Loosely coupled systems
coordinated by business
process engine

Deployment server for
distributed objects

Fine-grained integration through
synchronous method calls

Tightly coupled integration

Message
Broker

Process
Modeling

Tra
n s f o r m ati o

n
s

FIGURE 1 Integration servers and application servers

Java COM

Java COM

60 FEBRUARY 2001

their messaging API of choice. Therefore
it should be possible for an EJB to send a
JMS message via JMS, and for this mes-
sage to be received as an MQSeries mes-
sage by an MQSeries application. The
sender should be unaware of the mes-
sage format required by the recipients,
and the recipients should be equally
unaware of the format of the message
when it was sent. The message broker is
responsible for ensuring that the mes-
sage is transformed into the correct for-
mat before it reaches its final destination.

The message broker must also sup-
port the usual guaranteed delivery
(“store-and-forward”) semantics and
provide content-based routing accord-
ing to business rule.

Data Transformation
The role of data transformation is to

ensure that when data reaches its destina-
tion (usually via the message broker) the
format of the data is what’s expected by
the receiving application. The rise in pop-
ularity of XML and the “opening up” of
ERP and CRM applications to support
integration via XML will make data trans-
formation capabilities even more critical
to enterprise systems. It’s quite possible
that two-partner organizations will sup-
port different data models (whether tradi-
tional data models or XML schema) with-
in their systems and that data transforma-
tion will need to be performed if the orga-
nizations are to integrate their systems.

Process Modeling and Automation
The final major component of the inte-

gration server is process modeling and
automation. The process modeling allows
business analysts to model the business
processes and define the various business
rules and activities that drive these
processes. The process automation allows
the analyst to map these business process
models onto the underlying applications.
The integration server then coordinates
the operations of these applications
according to the defined business rules.

The process automation tools must
also be standards-based and support
interaction between applications that
are based on different architectures (e.g.,
CORBA, EJB, DCOM).

The architecture of a typical integra-
tion server is illustrated in Figure 2.

The use of messaging and data trans-
formation also lends itself to supporting
XML as a data format. XML has rapidly
become the de facto data format of e-
commerce, but has just as rapidly
become fragmented by the various orga-
nizations that are defining business
schema for XML data integration (e.g.,
BizTalk, RosettaNet, OASIS). This has
resulted in a number of different forms

for representing common business enti-
ties, for example, purchase orders. This
disparity of forms requires transforma-
tion technology to change the data into
the expected format, and the combina-
tion of asynchronous messaging and
dynamic data transformation of XML
make this a relatively simple but effective
process. This results in the ability to inte-
grate with applications, not just within
the enterprise boundaries, but also with
applications that are external to the cor-
porate firewall (i.e., applications that
exist in the “extended enterprise” – sup-
pliers, partners, and customers that form
part of the corporate supply chain). Inte-
grating these applications using J2EE and
CORBA alone would be an extremely dif-
ficult, if not impossible, task. But integra-
tion servers used with the J2EE applica-
tion servers now make this type of inte-
gration more manageable.

The Future – Java Connector
Architecture

Sun recently released the proposed
final draft of the J2EE Connector Archi-
tecture (JCA) 1.0, aimed at providing a
standard way for back-end applications
to plug into the J2EE Application Server
platform. JCA, which was developed
under the Java Community Process
(JCP), will be part of the next version of
J2EE, version 1.3, expected in early 2001.
Although JCA is missing some key func-
tionality required in more complex inte-
gration situations, it marks an important
step toward reducing the costs and bur-
den of back-end integration.

The J2EE Connector Architecture
defines a set of functionality that appli-
cation server vendors must provide and
that back-end system vendors (e.g., SAP,
PeopleSoft, Siebel, Clarify, or third-party
connector developers) can use to plug
into the application server. The architec-
ture doesn’t specify how this capability is
implemented; that’s up to the platform
provider or the connector developer.

The JCA has two basic components:
the Common Client Interface (CCI) and a
set of system-specific services. An adapter
developer provides an interface to CCI
along with its side of the system contracts
specified as part of the connector archi-
tecture. The application server vendor
implements its side of the system con-
tracts as part of its base J2EE platform.

The JCA provides the following capa-
bilities to the application servers:
• Transaction management: Enables

the transaction manager provided
within the EJB application server to
manage transactions across multiple
back-end systems.

• Connection management: Enables

the application server to create and
manage connections to back-end sys-
tems. One important capability pro-
vided is support for connection pool-
ing, since connections to back-end
systems are expensive.

• Security: Enables the developer to
define security between the EJB server
and the back-end system. The specific
security mechanism used is depen-
dent on the security mechanism pro-
vided by the back-end system.

Despite these features, JCA 1.0 is still
a point-to-point solution for integrating
applications. It doesn’t support asyn-
chronous communications and it only
supports the synchronous request/reply
model. This means that a JCA resource
adapter can call a remote system and
wait for a response, but the remote sys-
tem can’t initiate a call back to an
adapter at a later point. Although this is
common in the application server
world, it’s not well suited for more com-
plex integration scenarios.

It’s unlikely that JCA adapters will be
available until the latter half of 2001 at the
earliest, and even then will be based on
the version 1.0 specification. Thus they
won’t support asynchronous communi-
cations between the EJBs and legacy
applications. It’ll probably be well into
2002 (or later) before asynchronous
adapters are available. Until then, integra-
tion servers look to be the best way of pro-
viding this loosely coupled integration
between the Internet-enabled applica-
tions and the existing back-end systems.

Conclusion
The rapid acceptance of J2EE has

done much to promote the use of the
Internet as a viable e-commerce medi-
um. However, J2EE has weaknesses
when it comes to building scalable and
resilient enterprise-wide architectures.
By leveraging some of the features of
CORBA, J2EE does overcome some of its
limitations. However, it’s still not
enough to satisfy the real-world
requirements facing most organiza-
tions. The recent emergence of a new
generation of standards-based products
– integration servers – will help fill the
gap in the J2EE–CORBA combination.
The integration server products intro-
duce a more flexible and robust archi-
tecture based on asynchronous mes-
saging to J2EE. This helps it extend
beyond the boundaries of the corporate
firewall and provide integration across
the Internet using technologies such as
XML and SOAP.

C O R B A C O R N E R

paul.moxon@prismtechnologies.com

AUTHOR BIO
Paul Moxon is a product

manager at PrismTech
Ltd., a software company

specializing in systems
integration – CORBA and

J2EE integration in
particular. Paul has more

than 10 years of
experience in various

distributed systems,
including DCE, CORBA,
DCOM, and J2EE. He

graduated from the Uni-
versity of Northumbria in
the United Kingdom with

a degree in business
administration.

Java COM

62 FEBRUARY 2001

In May and July of 2000, Java Developer’s Journal (Vol. 5, issues 5

and 7) ran a two-part article on how business rules can be implemented

in Java. To recap, business rules are a formalized representation of the

policies, practices, and procedures of an organization, describing how

business should be conducted under any particular set of conditions.

Business rules aren’t a programming concept but rather a business con-

cept. The business rules of an organization may be contained in policy

manuals, memos to employees, unwritten “tips and tricks” passed from

employee to employee, or lines of program code spread among various

applications serving different business needs.

The use of specialized business rule authoring/execution environ-
ments with independent rule repositories was introduced as a way to
gain more control, consistency, and reuse of business rules throughout
the automated systems of an enterprise. Business rules can be applied
to Web-based interactive systems, and this is often the easiest way to
grasp representative application examples. For instance, Web-based
merchandising rules may decide the best products to display and pro-

mote to an individual shopper and the proper pricing and discounts to
offer on an order.

However, many other uses of business rules affect back-office pro-
cessing or interactive system behavior via communications channels
such as automated phone systems, electronic kiosks, wireless devices,
and live customer agent support. (These channels are often referred to
as “touchpoints” since they describe various means by which an end
user can “touch” the enterprise.) It’s also valuable to remember that rules
may affect interactions not only with customers of an organization, but
with its employees, suppliers, business partners, and the general public.

The previous JDJ articles mentioned products such as Blaze Advisor
from Blaze Software (now a part of Brokat Technologies), JRules from
ILOG, and Jess from Sandia National Laboratories as tools companies
can use to implement business rules in Java applications. This article
explores the representation of business rules and data objects, and
focuses on how rule objects interface with external systems. We also
examine issues in usability for nontechnical employees charged with
updating business policies and operational logic in their organizations.

Using Objects in Rules
As shown in previous articles, business rules can easily be thought of

in terms of IF-THEN declarative statements, pairing a specific condition
set with a desired action:

IF Amount of Order > $100

THEN Discount = 5%.

Although this is an arbitrary representation, many programming lan-
guages have made the analogy and it seems to be one that maps well to

F E A T U R E

WRITTEN BY KEN MOLAY

human understanding of situational responses. Both conditions and
actions must be specified in terms of objects, a concept familiar to Java pro-
grammers, but one that’s often confusing to business people attempting to
define or maintain business-rule logic for an application. It’s easy for Java
programmers to forget that the term “object” is used in a conversational
English sense to specify a tangible item that can be seen, touched, and
manipulated. Properties of objects are hardly ever thought of by nonpro-
grammers as creating different instances of a single object type.

For instance, to the layman, a yellow tennis ball and a white tennis
ball are two distinct objects, each having a physical manifestation inde-
pendent of the other. Making the conceptual leap to each being an
instance of a single object type with varying property values is a training
exercise. It gets even worse when dealing with intangible process con-
cepts, such as “the ExecutionPriority of a CollectionEvent.”

Thus dealing with object and property definitions in business rule sys-
tems is a two-sided problem. Any company using formalized systems will
already have created object definitions to represent the data being manipu-
lated. Installing a new piece of software, such as a business rule engine,
requires the programming staff to define the company’s existing object rep-
resentations in the proprietary framework of the new software. And because
business rules are intended to be exposed to the business users, those users
must have a familiar way to understand, use, and manipulate these objects.

Most corporate IT departments are responsible for a variety of sys-
tems written in different languages, incorporating various third-party
software packages produced at different times, and making use of object
definitions originating in Java, databases, CORBA, COM, XML, and other
formats. An attempt to rely exclusively on any one of these object repre-
sentations by a new vendor is likely to cause implementation difficulties
and delays. The approach favored by many successful business rule soft-
ware vendors is to create a proprietary internal object representation
and use utilities to map to external business object models.

As a demonstration of this approach, Figure 1 shows an object model
import wizard from Brokat Technologies’ Blaze Advisor.

The utility has been given the name of an external Java class and has
generated a table showing all the object and property definitions the
class contains. The implementation specialist may include or omit indi-
vidual properties (and Java methods, if desired) to be made referable
from within the business rules. Individual properties may be renamed
for use within business rules in order to make them more convenient to
write or more understandable for business use.

Importing external object model definitions and mapping to internal
representations enhances efficiency and speed in implementing the new
business rule system. Object models need not be manually printed out,
checked for type definitions, and recoded by hand in a proprietary lan-
guage. Organizations looking to integrate business rules into their oper-
ations should look for smooth mapping and integration facilities for
whatever object model representations they use.

A similar object model mapping can be used for external database
definitions. In the Java world, JDBC connections interface with database
tables (see Figure 2).

Columns may be identified from a single table or from multiple
tables, and SQL-formatted WHERE statements can be used to identify
specific instance inclusions, joins between tables, and other data restric-
tions (see Figure 3).

Once object/property definitions have been imported, business rule
authors may wish to create subclassed objects for use within their busi-

Java COM

64 FEBRUARY 2001

FIGURE 2 Blaze Advisor database import wizard

FIGURE 4 Subclassing objects

Loan

CarLoan

FIGURE 3 Using SQL to restrict data instances

FIGURE 1 Blaze Advisor object model import wizard

Java COM

66 FEBRUARY 2001

ness rules. For instance, a finance company may
have a Loan object defined in their general business
systems. But for writing business rules dealing with
automobile purchases, they want to define a special
CarLoan object, inheriting the properties of Loan
(see Figure 4).

This may be accomplished through graphical
editors, filling in new property names and types in
a form template, or through simplified code con-
structs such as:

A CarLoan is a Loan with

{ an odometerReading : an integer,

a dealerName : a string }

initially { odometerReading = 0 }

Linking External Applications to Business Rules
Once objects have been defined for use in the

application’s business rules and mapping has been
made to external business objects, a runtime link
must be established to keep internal rule assertions
and external data synchronized. This takes two
forms: data being passed to the rule engine for use in reaching rule-
based conclusions, and data being updated in external systems as the
result of rule execution.

Remember that a business rule service is one component of an over-
all application. Depending on the application, the rule service may be
explicitly called in order to make a logic-based decision, monitor events,
and wait for a trigger to stimulate rule firing, or to create an external
event to obtain additional information needed for processing. With
mapped data objects, the business rule engine can interact in any of
these sample use case scenarios:

1. Application: Instantiates data in a customer object and a loan appli-
cation object. Should I approve, decline, or refer the application?

2. Rule Engine: Return an answer of approve/decline/refer.

1. Application: Starts the rule service to monitor external competitor’s
price object.

2. Rule Engine: Whenever competitor’s price changes, fire rules to poten-
tially update our price and discount business objects for use by all sys-
tems.

1. Application: Updates customer age object value and continues rule
processing.

2. Rule Engine: To continue processing, a value for customer age is
required. Retrieve the value from an external database table or have
the application prompt the user.

Business Person Interaction with Rule Objects
The preceding sections dealt with the mechanical linkage of objects

in a business rule package with external data systems. These are con-
cerns for the technical implementation personnel at a company. Once
the IT department has created definitions and linkages for their business
objects, the question becomes: How can the objects be manipulated to
drive business processes? It’s then an issue for the business-level per-
sonnel at the company.

System development and maintenance has traditionally taken the form
of IT personnel creating system requirements definitions through a process
of interviews and cooperative work sessions with the business users of the
proposed system. As development progresses and the system becomes
more tangible and well understood, the business people often think of new
exception cases, additional uses in new scenarios, or refinements to their
original logic. Integrating logic changes into system programming can be
laborious and time-consuming. Once the system is completed and in

place, external and internal business factors may
require periodic updates to the business logic in the
form of new decision conditions and results.

Examples are endless. Merchandisers may vary
product discounts based on supply and inventory
considerations. Financial institutions may change
interest rates or information requirements based on
new regulatory mandates. Human Resources poli-
cies may affect employee benefits based on organi-
zational changes or management discretion.

In all such cases a delay between making the busi-
ness decision and having it reflected consistently
throughout all corporate information systems is
costly, frustrating, and sometimes even legally
actionable. IT departments may be called upon
repeatedly to make small changes to systems, taking
their concentration and resources away from other
system development tasks. Conflicts arise with IT
managers trying to create structured work processes
and release schedules while business management
attempts to react swiftly to new business conditions.

Business rule systems were created to centralize
the business logic aspects of automated systems and

separate them from the underlying infrastructure of the systems’ opera-
tion. In this way, rules can be changed to control conditional actions
without affecting the overall programming code. If the rules are then
exposed to the business decision makers themselves for maintenance
and management within a constrained range of control, the IT depart-
ment can be freed for major structural changes while the policy makers
manage day-to-day business logic.

The structure for facilitating such logic separation has been imple-
mented by most business rule software vendors. A centralized reposito-
ry of rules, visible and alterable by the business owners, is common in
such systems. The differentiator becomes the ease, speed, and security
with which rules can be changed by nontechnical professionals.

Business rules are usually expressed in some structured language
unique to the software vendor. As an example, in Jess from Sandia
National Laboratories, a rule might be expressed in the following form:

Jess> (defrule CanPersonVote

(person (age ?x))

(test (< ?x 18))

=>

(printout t ?x " is a minor and may not vote"))

The problem with such formalized languages is that the personnel
require programming training in order to make changes, and there’s not
an intuitive conceptual link between the business concept and the
objects, values, conditions, and actions that will be performed.

A business rule language should offer flexibility in authoring to suit
various users’ skills and comfort levels and should provide a natural link
between a business concept and its formalization in the system. As an
alternative example, here’s the same rule code expressed in Blaze Advi-
sor’s structured rule language:

Rule CanPersonVote is

If person’s age is less than 18

then print(the name of the person " is a minor and may not vote").

Note the natural-looking sentence structure of the rule and the two differ-
ent ways of referring to the object – person – and its properties – age and
name. In classic Java dot notation, the object-property combinations would
have been written as person.age and person.name, and indeed, the product
allows for this usage in the syntax. Mathematical comparison operators can
also be expressed either in symbolic form familiar to programmers or in Eng-
lish language formats. To illustrate the flexibility of the language, the following
statements are all well-formed constructs and are functionally equivalent:

‘‘

’’

The differentiator
becomes the

ease, speed, and
security with

which rules can
be changed by
nontechnical
professionals

Java COM

68 FEBRUARY 2001

If customer.age > 16 then…

If the age of the customer is more than 16 then…

If customer’s age exceeds 16 then…

There’s no performance penalty for using one version versus anoth-
er, as they’re all compiled into the same internal runtime representation
for use by the rule engine.

Rule Maintenance Without Code
Even with more natural representations of business concepts in a

business rule language, maintenance of the rules requires training in the
specifics of that language, the use of some form of text editing environ-
ment, and exposure of the full rule syntax to the business policy maker.
Maintenance personnel must also know the correct names of any
objects and properties they wish to use in a rule. No matter how natural
the names are, they can be overwhelming when dozens or even hun-
dreds of names are sprinkled throughout a complex system. Business
maintenance personnel have access to the entire rule, which could lead
to undesired changes in the structure of the rule code, unauthorized
changes to values they should not be altering, or simple mistakes due to
unfamiliarity with the specific object and property names, or even from
typographical errors.

The challenge for systems personnel is to build a stable system and
then allow a specific subset of ongoing maintenance changes by the
business units. Change should be controlled with authorizations, and
the change process should insulate the maintenance personnel from
process complexity and memorization.

One approach is to allow rule developers to explicitly identify
pieces of rules that should be exposed to business users for mainte-
nance. These objects, conditions, or values may be constrained to a
predefined set of allowed values, or may be left open for unrestrict-
ed input. Web pages are constructed using terminology and graphics
that are familiar to the business policy makers, with replacement
values presented as input fields. These may use fill-in-the-blank
boxes or HTML features such as pull-down lists or radio buttons for
entry. The use of password-enabled, Web page access security deter-
mines maintenance access, and rule changes can be tracked and
authorized against an LDAP rule repository for check-in and check-
out of rules.

As an example, let’s use a generic merchandising rule:

Rule ProductDiscount is

If customer’s age is more than 55

then discount = 0.05.

In the simplest form of maintenance, we might want to let the busi-
ness unit change the amount of the discount given to our senior cus-
tomers. We highlight the discount value and place it on a Web page, along
with text that describes the use of the value. Note that we don’t have to
use any of the syntax of the rule itself. A JSP tag links the value entered on
the Web page to the replacement point in the rule code (see Figure 5).

In a more complex example, we might make a generic template for
defining discounts based on any one of a number of conditions:

Rule ProductDiscount is

If customer’s age is more than 55
then discount = 0.05.

We can let the policy maker base the offered discount on one or more
predefined properties for the customer object. (Let’s hope no merchan-
diser would actually base discounts on the criteria shown here!) He or
she can also define the type of comparison operator, the comparison
value and, of course, the discount amount. The rule-maintenance Web
page might look like the one in Figure 6.

With a system such as this in place, maintenance personnel no longer
have to remember proprietary syntax or object/property names. They
can think purely in terms of the business decisions they’re making. Sys-
tem developers can rest assured that the maintenance person can’t make
unauthorized changes, such as basing discounts on the customer’s height
or weight, or setting the action to apply a surcharge instead of a discount.

Summary
Business objects are a standard means for representing data in automat-

ed systems. Any company installing a business rule system should make
sure that importation of existing object models is simplified and accelerat-
ed so they can quickly move to the core business task of writing the opera-
tional business rules. For business people to take advantage of the central-
ization and user maintenance of rules, they must be able to understand the
objects and properties used in the business rules. Representation of rules
should allow for flexibility in expression of these objects and companies
should make sure that rule maintenance is practical on an ad hoc basis. This
requires protecting the integrity of the rule structure while allowing business
policy makers to make authorized changes in a comfortable and familiar
manner without programming or training in specialized tools.

AUTHOR BIO
Ken Molay, director of product evangelism for Brokat Technologies, a Brokat company, has more than eight years
of experience in development, management, and customer application of expert systems and business rules.

FIGURE 5 A simple rule maintenance screen

FIGURE 6 A multichoice rule-maintenance screen

ken.molay@brokat.com

Over this festive period we’ve been
fed the usual nonsense on television.
This year, however, I’ve been avidly
glued to a documentary series chroni-
cling the American West and how it was
“won,” and I use the word won in the
loosest sense. In our schools we aren’t
taught that much American history; we
stick to castles with kings and queens
lopping each other’s heads off. This
series has whet my appetite enough to
dig for more information. I have a lot of
unanswered questions. So if anyone
knows any URLs of reliable historical
reference, please e-mail them to me.

Enough talking about the past and
more about the future. This column,
after all, is Industry Watch, as opposed
to Industry Watch of Yore!

TagFusion
I’ve never been a great fan of JSP

(JavaServer Pages) and what have you.
But everywhere I look it seems that all
the major application server vendors
are throwing a serious amount of devel-
opment and marketing behind this
(and I will probably upset some JSP
purists here) god-awful technology. I
just can’t see the allure of a technology
that gives so much power to those that
should never be entrusted with a calcu-
lator, let alone a “Webplication.” Sure,
the concept seems interesting enough,
providing the ability to embed Java
code within an HTML page. Sounds
great on paper. However, ask anyone
who’s had to support someone else’s
JSP abortion, and you get a different
perspective on the whole JSP debate.
It’s a support nightmare.

Now it would be wrong of me to dis-
miss JSP completely without giving it a
proper hearing. The custom tag API in
which it was introduced is indeed a great
piece of technology and one that should
be exploited a lot more. While I’m inter-
ested in seeing where this one is heading,

I’m not at all convinced it should be any-
where near JSP. Doesn’t fit as far as I’m
concerned. A custom tag library is proba-
bly closer to that of the servlet API as
opposed to the JSP interface. The purists
will argue that a JSP page is just a servlet.
Technically, I can’t argue with them on
that score. However, JSP is yet another
layer slowing down the page-rendering
process, where a layer need not exist.

The reason I say custom tags are
closer to the servlet API is simple: the
servlet API has had this facility from day
one, with the Server-Side-Includes (SSI)
facility. So why reinvent the wheel?

With SSI we had the ability to com-
pletely hide our inner workings from
those who might meddle. We simply
presented them with a simple interface.
An interface they were used to using. An
interface that wasn’t foreign to them. A –
dare I say it? – tag!

JSP, I believe, blurs the border
between presentation and business
logic a little too much. It allows those
who know nothing about the business
logic to fiddle, and those who haven’t an
artistic bone in their bodies to meddle. A
very ugly scene can ensue.

I find it wonderful that Java is so
accepted now. It’s refreshing to arrive on
a client’s site and find their server
already Java enabled. Sadly, this wasn’t
the case four years ago. Not only did you
have to install your own software when
you arrived, but also that of the JVM, the
servlet engine, and sometimes even the
Web server.

Early on at n-ary we set about devel-
oping our own HTML tag templating
system. We quickly discovered how use-
less it was to write Java servlets for each
client project. The Java servlet is indeed
a clumsy technology when all is said and
done, and in the majority of cases devel-
opers are creating more work for them-
selves than they’re supposedly solving.

To this end we designed a complete
templating system that runs on top of the

Java servlet API. Our tags were extensive
and very versatile and, thanks to Java, ran
on all servlet-enabled platforms. Over the
next three years our system, which we
called tagservlet, was under constant
development with testing in the field.

This time last year we were about to
release it free to the world. However, as
we looked around in this very busy mar-
ketplace, we pulled back and thought,
The world doesn’t need yet another
HTML template system thrust upon it.

What a difference a year can make.
We studied the alternatives closely and

decided we would adapt our tag system to
fit alongside that of another. The one that
resembled our tag structure and that our
clients would moan about was CFML from
Allaire. ColdFusion, they would say, “Great
tag system, but slow as hell.” We spent a
month or so looking in depth at this system
and decided to change our tagservlet to
what is now known as tagFusion.

The tag switchover didn’t take as long
as we first envisioned, with the majority of
time devoted to developing the expression
library that CFML boasted. We launched
our new and improved tagFusion to our
clients in beta form in the summer of
2000. It was received very well, outper-
forming the ColdFusion server in the area
of six to 10 times for some pages. We went
through a series of rigorous tests and
ironed out the majority of the wrinkles.

We started shipping CFML solutions
to our clients, creating the necessary cus-
tom tags that their particular requirement
warranted. We were no longer a Java soft-
ware company, but a solutions company.
It was a spooky changeover for us.

Would you believe we had to downsize
our Java team? We had to made some of
our Java team redundant simply because
we didn’t have the work to support them.
We had created a tool that was so success-
ful for our consultancy firm that it
changed the focus of our entire business.

We then began hiring other skill sets
to support the emerging market that

WRITTEN BY
ALAN WILLIAMSON

A
s I write, it’s the day after Boxing Day. I was supposed to have this written
yesterday, but to tell the truth I just couldn’t find my muse...so today will
have to do. As I wake up this morning I see in horror the latest on a mad-
man who let loose with a firearm on his work colleagues. Sadly, nothing ter-
ribly new in that fact for a nation that’s so proud of its right to bear arms.
However, this particular instance had it occurring within an Internet con-
sultancy company. This industry is no longer as safe as the career officer
once promised.

Things Can Only Get Better

70 FEBRUARY 2001

Java COM

72

tagFusion opened up for us. Not only are
we now able to take on existing Java pro-
jects, but we can deliver them faster
with a standard that our clients feel safe
with without compromising the open-
ness and deployment features of run-
ning under a J2EE environment.

One of the first pieces of advice given
to me when I set out to build a company
was not to be scared to change direc-
tion. I’ve seen many large corporations
changing direction and moving into
areas they’re not customarily known for.
Take HP, IBM, Sun, and even Microsoft
as a few examples. But I had just never
imagined n-ary being anything other
than a pure Java company. But here we
are, starting 2001 as a new company that
doesn’t focus its energy entirely on Java.

We effectively coded ourselves out of
a job. But I’m not sad. I’m excited at the
opportunities our vision has brought
and will continue to bring. We haven’t
completely left Java behind, though. We
have a supporting team for tagFusion,
and I can still be found cursing and
swearing at CodeWarrior!

Digital World
Technology is quite wild in the parts

of our lives it manages to reach. My son
was born recently, and within four
hours of that event, thanks to a digital

camera and a Web site, I had all of our
family and friends witnessing the new
addition to the clan, irrespective of their
distance. It’s now nearly a month since
Cormac introduced himself to the
world, and already I have more pho-
tographs of him than my parents have
of me in my entire child life. Add to that
the number of RealVideo clips I’ve
made of him. I have to sit back and mar-
vel at the ability to do all this. What real-
ly impresses me is how little it cost to
produce this technical diary.

With WAP just beginning to make an
appearance, I have to wonder what tools
will be at Cormac’s disposal when he
goes to document the new life of his first
child. Once we have that figured out, we
have to start coding for those tools. What
ingenious ways can we find to pull as
much functionality out of this hardware
with just software? This is what excites
me about this time we live in. We’re
young enough to remember what it was
like in predigital days to appreciate the
move to 1’s and 0’s.

To us the change is far more dramatic.
My son will never know the wonders of a
vinyl record or understand the complexi-
ty of the classic Space Invaders. I can’t
even imagine what the game of his day
will be. I just hope I’m about to witness
some of it and, more important, together
with him, make some of it happen.

Original Drivel
I do a lot of reading – mainly current

affairs–type stuff. One of the chaps I fol-
low is one Jesse Berst of ZDNet fame.
Jesse, a bit like myself, isn’t scared to court
a little controversy once in a while, and I
admire anyone who does that sort of
thing. Takes a lot of guts to throw one’s
body over the barbed wire. Jesse produces
a daily e-mail editorial that’s highly infor-
mative and sometimes quite entertain-
ing. However, on one such occasion Jesse
was twittering about wireless and what
have you, and wrote a sentence I thought
I had heard somewhere before. On my
weekly back review of Wall Street Journals
I found the phrase again. Printed two
days before Jesse’s article. Coincidence? I
don’t know. You decide.

But rest assured about reading this
column: it may on occasion be drivel,
but at least it’s original drivel!

And on that note, see you in the
March issue of JDJ.

AUTHOR BIO
Alan Williamson is CEO of the first pure Java company in
the UK, n-ary (consultancy) ltd, a Java solutions company
specializing in delivering real-world applications with
real-world Java. Alan has authored two Java servlet books
and contributed to the servlet API.

alan@n-ary.com

FEBRUARY 2001

Java COM

Java COM

WRITTEN BY MANI MALARVANNAN

When Sun released J2EE to capture

the growing e-business market, it changed Java

from a language to an enterprise platform.

Several key players such as BEA and Oracle
have pledged their support and endorse J2EE
standards in their application server products.
Several other companies are either already
using the Java application server or are thinking
of using it in the near future. These companies
are scrambling to come up with a scalable
enterprise architecture that works with existing
technology and also grows with future changes.
However, developing scalable and adaptable
enterprise architecture is a difficult and time-
consuming task. Several software-engineering
principles such as OO methodology and soft-
ware patterns need to be used when construct-
ing the enterprise architecture so it will last.

To solve this Cybelink created Jlink, a vendor-
neutral framework based on Sun’s J2EE Blueprint
recommendations and guidelines. Architected at
a high-level, Jlink can be easily adapted to work
with any vendor-specific, Java-based application
server such as WebLogic and WebSphere. In this
three-part series we’ll discuss the Jlink frame-
work; in Part 1 we’ll discuss the Servlet/JSP por-
tion of Jlink and describe the problems associat-
ed with the Servlet/JSP technology. In Part 2 we’ll
describe the Jlink architecture and how it solves
the Servlet/JSP problems. In Part 3 we’ll describe
the workings of Jlink and provide an example.

Web Programming Model
and Servlet/JSP Container

Before going into the details of Jlink, we’ll
discuss the Web programming model and
explore how the Servlet/JSP container supports
it. Any Servlet/JSP-based Web application can
be modeled using the following simple actions:
a user submits a request using a Web browser
and clicking a button or a URL link. The HTTP
request first goes to the Web server and if it’s
plain HTML, it sends the HTML page to the
browser. If the request needs to execute a
Servlet/JSP, the Web server passes the request to
the Servlet/JSP container, which processes the
request by invoking the appropriate Servlet/JSP
and sending a response back to the browser. The
Servlet/JSP might process the request itself or
send it to a JavaBean or EJB, extract the result,
and transfer it to the browser via the Web server.

J2EE defines a Web container as a place
where servlets and JSPs live, and it acts as a
bridge between the client and EJB containers.
The communication between the Web and EJB

F E A T U R E

Part 1 of 3Part 1 of 3

74 FEBRUARY 2001

Java COM

76 FEBRUARY 2001

containers is carried out by JavaBean components. A crucial aspect of
Web development is to architect the middle tier, which processes the
HTTP request and sends the results back to the browser. Jlink provides
an easy mechanism to handle HTTP requests from the browser and send
them to the appropriate JavaBean component, which processes the
results and sends them back to the browser. An HTTP request can be
processed in one of the following ways:
1. Within Servlet/JSP components
2. Within JavaBean components
3. Accessing the EJB business components using local calls or through

RMI/IIOP
4. Accessing the Enterprise Information System tier (EIS) using a connector
5. Accessing databases using JDBC

This Jlink currently supports Options 1 and 2 and has been architect-
ed in such a way that future supports for Options 3, 4, and 5 can be inte-
grated into it.

Servlet/JSP Container Runtime Environment
Before going into the details of our Jlink architecture, we’ll discuss the

Servlet and JSP working model in detail. Once we understand the inner
workings of that, we can discuss the Jlink architecture.

When an HTTP request with a Servlet/JSP comes from a browser, the
Web server routes the request to the Servlet/JSP container (see Figure 1).
If the HTTP request comes for the first time, the Servlet/JSP container
compiles the Servlet (in the case of JSP, it’s converted into a Servlet) and
processes the HTTP request by creating the following objects:
• javax.servlet.ServletContext
• javax.servlet.HttpRequest
• javax.servlet.HttpResponse
• javax.servlet.http.HttpSession

Conversely the second time an HTTP request comes for the same
Servlet/JSP from the same browser, the container creates only the fol-
lowing objects:
• javax.servlet.HttpRequest
• javax.servlet.HttpResponse

The second time an HTTP request comes for the same Servlet/JSP but
from a different browser, the container creates only the following objects:
• javax.servlet.HttpRequest
• javax.servlet.HttpResponse
• javax.servlet.http.HttpSession

The Servlet/JSP container creates one javax.servlet.ServletContext
object per Web application. This object provides application-wide services
for all Servlet/JSPs within that Web application. The Servlet/JSP container
creates one javax.servlet.HttpSession object for each browser connection.
Each HttpSession object provides services to the corresponding browser

connection and is responsible for maintaining the individual browser
information. Each time an HTTP request comes from a browser that con-
tains a Servlet/JSP, the container creates new javax.servlet.HttpRequest
and javax.servlet.HttpResponse objects. The HttpServletRequest provides
browser request information to a Servlet/JSP. It also provides data, includ-
ing parameter names and values, that’s set in the browser. The Servlet/JSP
uses the HttpResponse object to send responses back to the browser.

Another important concept of the Servlet/JSP container is that when
multiple HTTP requests from different browsers come to a Servlet/JSP,
the container handles it by creating a thread for each request. This sig-
nificantly increases the performance of the Web application. However,
this feature also creates a problem that will be addressed in the next sec-
tion.

Life Cycle of the Objects
In the previous section we discussed the Servlet/JSP container’s run-

time environment. In this section we’ll look at the life cycle of the HttpSes-
sion, HttpRequest, and HttpResponse objects that make the runtime envi-
ronment. The ServletContext object exists as long as the Web application
is active in the Servlet/JSP container. When the Web application is either
closed or restarted, the corresponding ServletContext object becomes a
potential candidate for garbage collection by the Java virtual machine.

The HttpSession object that’s created for each browser connection
remains within the Servlet/JSP container as long as the session is active.
When the session is inactive for a specific time period, the Servlet/JSP
container removes that object and makes it a potential candidate for
garbage collection.

When the Servlet/JSP container receives a new HTTP request from
the browser, it removes the references to the old HttpRequest and
HttpResponse objects and creates new ones.

The HTTP is a stateless protocol, that is, it doesn’t maintain the state
of the HTTP requests from the browser. Each time a new HTTP request
comes from the browser, it doesn’t maintain the state (session data) of
the previous HTTP request. In most Web applications it’s always neces-
sary to maintain the user session so that content is sent to the correct
browser. If not, the user must log in each and every time, not an accept-
able solution. By creating the HttpSession, HttpRequest, and HttpRe-
sponse objects at the appropriate times, the Servlet/JSP container pro-
vides a solution to the above problem. However, this solution is primitive
and has its own problems. We need to extend this concept so we can
have a scalable, maintainable, and adaptable architecture.

Session Data Storage
Session data can be stored at the client- or server-side. In the client-

side approach we can use the following techniques: cookies, URL rewrit-
ing, and hidden fields. In the server-side approach we can store the ses-
sion data in a persistence store that can be retrieved for later use.

Client-Side Cookies
We can use client-side cookies to store all the session data with the

client ID. Once the session data has been written, it can be retrieved later
using this ID. By converting all the session data into a string, it’s possible
to store an entire session data into a cookie. Listing 1 shows how you can
use, store, and retrieve cookies.

Once the cookie has been written, you can retrieve it from an HttpRe-
sponse object using getCookie(). Cookies are easy to implement but they
have several limitations: a cookie can only store up to 4K of text, and
there are restrictions on the number of cookies that can be stored in a
given domain.

Client-Side HTML Hidden Fields
Another approach to preserving session data is using “hidden fields,”

available in HTML INPUT tags. The stored session data can be retrieved
using the HttpRequest class that’s defined by the getParameter()
method. Although this approach is easy to use and implement, it has its

FIGURE 1 The architecture of the Servlet/JSP container. For each
Client,a session object is created, and for each HTTP request, a request
and response object is created. Each HTTP request is handled in a
separate thread within the Servlet/JSP container.

Browser1

Request
Objects

Request
Objects

Application
Object

Request
Objects

Request
ObjectsSession Object

Session Object

Browser2

Web Server
Servlet/JSP

Container

Java COM

78 FEBRUARY 2001

own problems – we can store only string types to the hidden fields, and
we can’t store other objects. Another major problem with this approach
is that the performance of the Web site decreases significantly. First, a
request comes from a browser, you process that request, store the result
in the hidden fields, and send that HTML page back to the browser for
additional user requests. Next, a request comes from the same user, you
process the first request as well as the second one, and send the result
back to HTML. With this approach you end up processing the same data
again and again so it’s not suitable for large Web sites.

Client-Side URL Rewriting
Generally this technique is used when the user disables the cookies

in the browser. You append a client ID as a response parameter to all
URLs that are served by the Web server. This is accomplished by using
the encodeURL() method defined in the HttpServletResponse class. One
problem with this approach is that every URL on every page must be
rewritten dynamically in order to embed the client ID in every request.
Listing 2 provides an example of URL rewriting. In it the itemID is used
as a client ID that identifies the user in case the browser is disabled by
the cookies. Note: You need to generate these URLs for each and every
link in all your pages, which is tedious and difficult to maintain.

Another problem with this approach is security. If we store all the session
data in the client, with little effort anyone can access that data. One way to
solve the problem is to encrypt the session data before storing it on the
client-side. However, even if you encrypt the session data it’s still not a good
practice to store sensitive business data at the client-side.

Server-Side Persistence Approach
In this approach we use the client-side to store only the client ID

(using cookies or hidden fields); the session data associated with this ID
is stored in the server. When the cookies are turned off in the browser, we
can use URL rewriting to send the client ID to the browser. Using the
method encodeURL() that’s defined in the HttpResponse class solves all
the problems mentioned earlier in the client-side approach.

Problems with the Servlet/JSP Container Programming Model
In this section we’ll explore the inherent problems associated with

the Servlet/JSP programming model. As explained earlier, it’s a complex
task when multiple HTTP requests come for the same Servlet/JSP. The
Servlet/JSP container creates a new thread to handle each request. So all
the threads share the same instance variables in the Servlet/JSP. This
makes it impossible to store the different client information in the
instance variables in the Servlet/JSP. The only option is to use the
HttpSession object to store the instance variables, which can be
retrieved or removed as necessary. But adding and removing instance
variables to the HttpSession object from any Servlet/JSP will create
unmanageable spaghetti code. Similarly, accessing the HttpRequest and
HttpResponse objects directly from the Servlet/JSP will also create
unmanageable code. So we need a mechanism that helps us use the
HttpSession, HttpServletRequest, and HttpResponse objects in a more
controlled and manageable way.

When developing Web applications, map the browser requests to the
appropriate Servlet/JSP. The easiest way to map the browser actions to
the back-end Servlet/JSP is to use a query parameter within the HTML
forms or URL links and have an if-then-else statement to find the appro-
priate Servlet/JSP. Although this approach is simple, it creates a perfor-

//Setting Cookies
package test;
import javax.servlet.*;
public class CookieSetter(HttpServletResponse resp, String
sessionData){

//Client Id is "CybelinkCookie"
Cookie coo=new Cookie("CybelinkCookie", sessionData);
coo.setDomain("cybelink.com");
coo.setPath("/");
coo.setMaxAge(24*60*60) //One day
coo.setVersion(0);
resp.addCookie(coo);

}

//Retrieving Cookies
package test;
import javax.servlet.*;
public class CookieRetriever(HttpServletRequest req, String
sessionData){

Cookie[] cookies=req.getCookies();
Cookie found=null

if(cookies != null){
for(int i=0; i<cookies.length ; ++i){

if(cookies(i).getName.equals("CybelinkCookie")){
found=cookies[i];
break;

}
}

}
}

import javax.servlet.*;
import javax.servlet.http.*;

import java.io.*;

public class ItemsCatalogServlet extends HttpServlet {

public void doGet (HttpServletRequest req,
HttpServletResponse resp)

throws ServletException, IOException{
//....get ShoppingCart

Items[] items = shoppingCart.getItems();
for(int i=0; i < items.length; i++) {

out.println("<a href=\""
+response.encodeURL("/servlet/items?bookId=" +bookId)+

"\"> " + items[i].getName() +
"</td>");

}
}

}

Listing 2

Listing 1

Java COM

80 FEBRUARY 2001

mance nightmare for Servlet/JSP developers. If we have to support new
Servlet/JSPs, we need to change the source code; this leads us to the
development life cycle of compile, test, debug, and deploy.

Another significant problem with developing Web applications is
managing the changes in Web resources such as HTML, Servlet, and JSP.
During development and production time, these resources change
names, directories, paths, and more. If we hard-code these names and
paths in our programs, for each and every change we have to go through
the compile, debug, test, and deploy cycles. An alternative is to store the
names and paths in a text file and access them from the programs. If
there’s any change in the Web resources, we can edit the text file and sim-
ply restart the Web application.

High-Traffic Web Sites
The standard JSDK implementation stores the HttpSession object

in the memory of the JVM where it was created so an HttpSession can
be retrieved efficiently. Though this approach works for smaller Web
sites or sites that don’t need session information from one request to
another, this approach doesn’t scale well in larger, high-traffic e-busi-
ness sites.

In those sites where multiple Web servers are used to serve Web
pages, a load balancer (either hardware or software) is used to distribute
the HTTP traffic to different Web servers. When the load balancer assigns
a Web server to a particular HTTP request that comes from a browser, all
subsequent requests from that browser are assigned to the same Web
server. The load balancer accomplishes this by examining the IP address
of the incoming packets and assigning a particular Web server to that
packet, as well as assigning the same Web server to all the packets that
have the same IP address. This method of assigning the packets with the
same IP address to the same Web server is called server affinity. Server
affinity may not be guaranteed because many companies now assign
random IP addresses to the outgoing packets. In this case the load bal-
ancer can’t assign the same Web server to packets that come from the
same browser. If we use the reference implementation of JSDK, we’ll run

into problems maintaining the HttpSession objects. The reference
implementation of JSDK maintains the HttpSession object in the mem-
ory of the JVM in which it was created. When the load balancer assigns
the packets from the same browser to different Web servers, the HttpSes-
sion object created for the first packet is lost to subsequent packets. To
avoid this problem we need to store the HttpSession object in the per-
sistence store, which must be accessible to all Web servers, so the right
HttpSession object can be retrieved using the session ID stored in the
cookie.

Summary
In Part 1 we described the inherent problems associated with J2EE’s

Servlet/JSP container and how they affect the creation of enterprise-
wide, scalable Web architecture. In Part 2, we’ll look at Jlink’s architecture
and how it solves these problems.

References
1. Sun’s J2EE Blueprint: http://java.sun.com/j2ee/blueprints
2. Buschmann, F., et al. (1996). Pattern-Oriented Software Architecture.

John Wiley & Sons.
3. Fields, D.K., and Kolb, M.A. (2000). Web Development with JavaServer

Pages. Manning Publications.
4. Servlet/JSP API: http://java.sun.com/products/servlet/2.2/javadoc/

index.html

AUTHOR BIO
Mani Malarvannan is CEO and cofounder of Cybelink (www.cybelink.com), a Minnesota-based company
that specializes in e-business consulting and training. Mani has several years of OO analysis and design
experience and has been working in Internet and Java technologies since their inception. He holds BS and
MS degrees in computer science.

mani@cybelink.com

Java COM

82 FEBRUARY 2001

MQSeries Integrator extends MQSeries
by adding message brokering that’s driven
by business rules. MQSI lets us add the
intelligence to route and transform mes-
sages or filter messages (content-based or
topic-based). It also lets us perform direct

database access so we can augment or
warehouse messages. We’ll look primarily
at routing and transforming as we build
our solution.

The MQSI Control Center lies at the
heart of MQSI’s user interface. We’ll use
this tool to create message types and mes-
sage flows. Figure 1 shows an example
message flow, one that would be applica-
ble to our problem. Notice the similarity
between this screen and the VisualAge for
Java Visual Composition Editor. Compo-
nents are dropped on the canvas and
wired together in much the same manner
as Java objects are in VisualAge.

The Message Flow
In our sample message flow we left

out any error or exception handling so
we could highlight the core tasks. As you
can see from Figure 1, the message flow
describes our stated problem: it takes
two disparate inputs and merges them
into a single XML output stream. Both
the C-formatted data and the XML data
from our legacy applications arrive on
message queues – the MQInput nodes.
The C input is routed through a proces-
sor, or “compute node,” that will trans-
late the data into XML. Both streams are
then sent off to an XML processor com-
pute node, where they’re merged and
placed on an output queue.

Notice that we haven’t defined how
the data gets onto the input queues in the
first place. In the complete solution, we’ll
define another message flow that sends
request messages to both legacy applica-
tions with the appropriate search criteria
for locating a customer. The input mes-

sages for the “Combiner” flow represent
the replies from such a query. Different
queries could be posed – a search by
name or postal code, for example. The
message flow defined here could be used
to process the results of any such query.

Before we get too deeply into the
message flow, we need to use the MQSI
Control Center’s Message Repository
Manager to define the message that will
encapsulate the C-formatted data.
There are three steps needed to create a
Message Repository Manager (MRM)
message from a C structure:
1. Create the message set.
2. Import a C structure to create a new

message type within the message set.
3. Create a message of that new

message type.

The creation of the message set only
involves choosing a menu option on the
Message Sets pane and giving the new
message set a name. MQSI can read a C
header file or a COBOL copybook, parse
the contents, and generate a message type
based on the structures or COMMAREAs
defined in the file. We’ve used the C head-
er file from Listing 1 (reproduced from
Part 1 of this article) to create a completed
message type with a minimal amount of
typing and clicking on our part.

Now we can return to our message
flow. Each of the input nodes has prop-
erties in which we can enter the queue
name that will be used and the message
format that will be presented. For the
CInput node, the message domain will
be MRM and the format will be our gen-
erated type, C_CUSTOMER_TYPE. For
the XMLInput node, the domain is XML.

V I S U A L A G E R E P O S I T O R Y

Consolidating Legacy Data

WRITTEN BY
BRADY FLOWERS I

n Part 1 of this article (JDJ,Vol. 6, issue 1) we discussed solv-
ing legacy data integration problems with VisualAge for Java
and WebSphere Studio. In Part 2 we’ll discuss using the
MQSeries Integrator and some of the steps for creating data
translations and data flows.

New ways to access back-end systems
Part 2 of 2

FIGURE 1 Proposed message flow

FIGURE 2 C to XML translation

V I S U A L A G E R E P O S I T O R Y

Notice how we’ve structured the flow
so the C structure is translated to XML
before further processing. Figure 2
shows the completed property sheet for
the CtoXML Compute node. We added
our MRM message type C_CUS-
TOMER_TYPE and wrote the ESQL for
the translation. To convert the C struc-
ture to XML, we included the line:

SET OutputRoot.Properties.MessageFor-

mat = ‘XML’;

We then used OutputRoot.XML in
the lines that follow to set the field val-
ues in the output XML. Notice that we
changed the field names between input
and output and that we didn’t include
the fields that aren’t required by our Web
application.

Because we chose to perform this
translation before sending both streams
to a common processor, the XMLProces-
sor can concern itself with the job of
merging two XML streams without
knowing that one or more of its inputs
started life in some other format. Again,
here’s a good opportunity to create a
reusable component.

Finally, we can use the MQSI Control
Center to deploy our message flow to the
running broker. We can do this from the
Assignments page. Figure 3 shows a
completed deployment.

Java Access to MQSeries
We have several ways to access

MQSeries from the code we’ll develop in
VisualAge for Java. MQSeries has fea-
tured a robust Java API for several years.
The original MQSeries Java API predates
the Java Message Service (JMS) API but
since the introduction of JMS, IBM also
provides a JMS implementation for
MQSeries so that developers can write
portable code to access MQSeries. Final-

ly, the IBM Common Connector Frame-
work (CCF) features an MQ connector.
CCF is quite powerful and flexible, and it
provides the basis for the upcoming Java
Connector API in J2EE.

We took a middle-of-the-road ap-
proach here and created a wrapper class
called MQAccess that we’ll use for our
queue access. Right now this class is
implemented using the MQSeries “origi-
nal flavor” API, but we could change the
implementation at any time without
affecting our business logic. This class is
shown in Listing 2. It uses the IBM
XML4J Parser for part of its data han-
dling, so that feature must be added to
your VisualAge for Java workspace.

We’ve provided a main() method to
illustrate how the methods in the class
should be called. To run this class, how-
ever, there are other steps that still need
to be taken, not the least of which is to
set up MQSeries, create something to
mimic the legacy systems during test-
ing, and start the MQSI Broker. This all
falls outside the scope of this article but
you can get a complete solution from
the “Patterns for e-business” kit that’s
available from IBM.

Finishing Off
Once the rest of the infrastructure is

set up and our MQAccess class is tested
in the VisualAge for Java environment,
the next step is to move the class into

WebSphere Studio so we can create the
wrapper servlet, HTML, and JSP for the
Web application. From this point we
can deploy to test and production
servers or to the VisualAge for Java
WebSphere Test Environment; move
Java code back and forth between Stu-
dio and VisualAge for editing, testing,
and debugging; and further enhance
the HTML and JSP files. For a discus-
sion on how to do all these things, see
JDJ (Vol. 5, issues 9, 10).

Summary
Hopefully, in this brief discussion of

MQSeries Integrator we’ve been able to
show how valuable a message broker
and translation/routing engine based
on business rules can be when you
need to solve a problem that involves
the integration of legacy data, regard-
less of the format and the location of
the data or legacy systems. Once we
created our message flows, we created a
flexible set of tools – reusable compo-
nents we can build upon as we need to
access back-end systems in new ways.
The MQAccess class we created could
serve as the basis for a set of EJB com-
ponents. It could service stateless ses-
sion beans for generic MQSeries access
or even be the engine for BMP entity
beans.

bradenf@us.ibm.com

FIGURE 3 Deployed message flow

AUTHOR BIO
Brady Flowers is a

software IT architect with
IBM’s WebSpeed team

specializing in WebSphere,
Java, and the rest of IBM’s

suite of e-business
applications.

#define CUSTNO_LEN 8
#define FNAME_LEN 24
#define LNAME_LEN 24
#define ADDR_LEN 24
#define CITY_LEN 24
#define STATE_LEN 2
#define ZIP_LEN 10

struct C_CUSTOMER {
char custno[CUSTNO_LEN];
char fname[FNAME_LEN];
char lname[LNAME_LEN];
char addr[ADDR_LEN];
char city[CITY_LEN];
char state[STATE_LEN];
char zip[ZIP_LEN];
double balancedue;
int datedue_month;
int datedue_day;
int datedue_year;
}
Listing 1

public class MQAccess {
private java.lang.String hostname
= "localhost";
private java.lang.String channel
= "JAVA.CHANNEL";
private java.lang.String userid =
null;
private java.lang.String password
= null;
private java.lang.String qMan-

agerName = null;
private com.ibm.mq.MQQueueManager
qManager = null;
private int defaultMaxMessageSize
= 100;

public MQAccess() {
super();
}

public void connectQManager()
throws com.ibm.mq.MQException {
disconnectQManager();
setEnvironment();
qManager = new
com.ibm.mq.MQQueueManager(qMan-
agerName);
}

public void connectQManager(String
newQManagerName) throws
com.ibm.mq.MQException {
setQManagerName(newQManagerName);
connectQManager();
}

public void disconnectQManager()

Listing 2

Listing 1

Java COM

84 FEBRUARY 2001

Assuming the reader knows what Java is and has at least a
vague notion of what a smart card is (a card the size of a
credit card containing a microprocessor), it’s only nec-
essary to bring the reader up to speed on a Java Card
and cryptography. Basically, a Java Card is a spe-
cialized type of smart card that’s programmed
using portable Java applets instead of propri-
etary commands. Cryptography can be used to
digitally sign a message that can be checked,
but not created, by those with access to the
public key of the sender. The cryptographic
algorithm required for this purpose uses a
public and private key pair that’s created con-
currently. The sender uses the private key to
encrypt a message, and the receiver uses the
public key to decrypt the message. If the public key
successfully decrypts the message, the sender must
be the proper owner of the private key associated with
that public key, therefore proving the identity of the sender.

Simplified High-Level Example
Here’s an example of how these three technolo-

gies could be combined. Suppose I want to send a
message to my stockbroker telling him to sell all

my shares of Microsoft. Now my stockbroker
wants to make sure it’s really me sending the
message. So using his Java workstation and a
couple of extra cryptography applications, he
generates a public/private key pair. He stores
the private key on the Java Card and issues it
to me. When I want to send a message to him,

I use an applet on the Java Card. It digitally
signs the message with the private key and

returns a signature to my workstation. I can
then e-mail the message with the signature to my

stockbroker, who knows the public key (because he
generated it). He can then decrypt the signature,

ensure that I had sent the message, and sell my shares.

Java COM

86 FEBRUARY 2001

F E A T U R E

Smart card, Java workstation, and cryptography: these are all growing areas of interest in the computing world. There are programmers – from

novice to expert – who know each of these technologies. But as the technology world becomes more intertwined, so too do these seemingly disparate tech-

nologies. With the introduction of the Java Card it’s becoming necessary for smart card developers to know Java and Java developers to know smart

cards. And as more transactions are done electronically, everyone will try to find ways of applying cryptography to electronic security. The purpose of

this article is to provide a sample solution that brings all three of these technologies together.

WRITTEN BY ANDREW WEBB

Java COM

88 FEBRUARY 2001

Note that the public key can verify the signature, but only the private key
can generate it. The advantage of this solution is that anyone with access
to the public key can verify the signature, and the public key doesn’t have
to be kept secret. The private key, however, remains on a secure, portable
token – the Java Card.

Goal
The remainder of this article describes how to integrate the various

Java-based tools to use public key technology on a Java Card. Included
in the sample solution are the steps to generate an asymmetric key pair,
load it onto a Java Card, sign a message with a private key on the card,
and verify the signature using the public key. The article describes the
design of the Java workstation program, Open Card Framework (OCF)
Card Service Provider, and the Java Card applet on the Java Card. All
other components are off-the-shelf applications that are available on
the Internet.

Description of Development Environment
and Hardware/Software Layers

Before starting, it’s necessary to describe the programming environ-
ment used in this sample solution and understand how the layers fit
together. Figure 1 shows, in general terms, the software and hardware
layers.

Referring to Figure 1, the following is a brief description of how the
pieces of the development environment work together.

The Java workstation program calls the JCE Cryptographic Provider
to generate the RSA key pair. The Java workstation program then calls
the OCF Card Service Provider that generates a card command to load
the private key. The card command is sent from the OCF Card Service
Provider to the OCF CardTerminal. Note that the OCF Card Service
Provider is responsible for card-specific operations, while the OCF
CardTerminal deals only with commands specific to the smart card
reader.

The OCF CardTerminal driver tells the physical reader to send the
command to the card. The Java Card OS passes the command to the
appropriate applet on the card. The applet handles the command, usu-
ally passing data back, calling the Java Card 2.1 API, or changing the state
of the applet.

Data returned from the applet travels from the Java Card OS back to
the smart card reader, then to the OCF CardTerminal, and finally to the
Card Service Provider.

The OCF Card Service Provider generates card commands that are
interpreted by the Java Card applet. The definition of the commands is a
shared source between the applet and the Card SService Provider.

More specifically, Figure 2 shows the exact software and hardware
development environment used in creating this solution. The actual
development environment is important to know should the reader want
to attempt the same solution. Some steps may differ depending on the
environment used.

The Motorola M-Smart Jade Workbench handles the generation of a
CAP file and loads it onto a Motorola Java Card using Visa Open Platform
(VOP) 2.0 commands. It can also be used to simulate and test a card
applet without using a physical card and reader. It’s a commercial prod-
uct that comes with sample Java Cards and a reader.

The Solution
Now that the relevant background information has been provided,

it’s time to get down to the actual steps of implementing the solution.
These steps are broken down into two main parts:

1. Programming for the Java workstation
2. Programming for the Java Card

Java Program on the Workstation or PC
Step 1: Design of the Java workstation program

It’s important to first understand that while the Java Developer’s
Kit 1.2.2 will support the code for calls made to cryptography routines,
it currently doesn’t have the cryptography functionality built in.
Specifically, the Java Cryptography Extension (JCE) has the structure
defined to generate an RSA key pair, and there are Open JCE Java

FIGURE 1 Software and hardware layers

Java Workstation
Program

Java Card
OS

Java Card
Applet

Java Card
API

Java Workstation

smart card
reader

Java Card

JCE Cryptographic
Provider

OCF Card
Terminal

OCF Card Service
Provider

FIGURE 2 Development environment used in the sample solution

javaterm.java Java Card
OS

Algs.java

Java Card
API

W98,NT Workstation

Towitoko
Chipdrive

Jupiter
Java Card by

Motorola

aba_jce.zip

Pcsc10CardTerminal

samserv
CardService

89FEBRUARY 2001

Java COM

Cryptography Extension Provider implementations available from
third parties.

The code to generate a key is:

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

keyGen.initialize(keylen, random);

KeyPair pair = keyGen.generateKeyPair();

In this code, keylen is perhaps 512 bits, and random comes from
these steps:

SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");

random.setSeed(1234);

(Note: Since the seed is set from a constant, this will produce the
same key pair each time. This is helpful for testing, but in the real appli-
cation you’d like to come up with an indeterminate
method for initializing the seed.)

To send the key to the card, it must be broken down
into its various components, which can be done with this
code:

PrivateKey priv = pair.getPrivate()

byte [] enc_key = priv.getEncoded();

enc_key is a byte array that now contains the vari-
ous key components in PKCS-8 format. The modulus
and private exponent that make up the private RSA key
can be extracted by using Appendix A as an example.
(All appendices in this article can be found at
www.JavaDevelopersJournal.com.) The private key is
sent to the card using the “samservCardService” class,
and the private key is no longer needed on the work-
station. The code for this can be found in the file
samservCardService.java, which is available on the
Motorola Smart Card Web site, www.motorola.
com/smartcard/.

Now we have a message, “I will pay Fred 8 dm,” that
we want to sign with the private key. We simply send the
message in a signing command as shown below and
receive the result.

ss.Algs(samservCardService.SIGN_OPER, samservCard-

Service.RSA512PRIV_ALG, (byte)20, 0, data);

The complete code for this can be found in the file
javaterm.java on the JDJ Web site.

Step 2: Connecting to the Java Card from the Java
workstation program

This step focuses on the smart card connectivity. The
code below shows how to start the OCF CardTerminal,
initialize the samservCardService instance, send an
application program data unit (APDU – a message sent
to a smart card that tells the card to do something), and
then close smart card operations.

SmartCard.start();

CardRequest cr = new CardRequest (CardRequest.ANY-

CARD, null, samservCardService.class);

SmartCard sm = SmartCard.waitForCard(cr);

samservCardService ss = (samservCardService) sm.get-

CardService(samservCardService.class, true);

ss.SelectApplet(); // Make our Javacard applet run.

SmartCard.shutdown ();

This is a simple version, and more details can be found in the Open-
Card Framework 1.2 Programmer’s Guide included with OCF.

Step 3: Design of the OCF Card Service Provider code
Two application program data units define the samservCardService:

(1) select algsapp and (2) AlgsOperate. The operations associated with
the AlgsOperate APDU include Load Key (modulus), Load Key (expo-
nent), Encrypt, Decrypt, Sign, Verify, and Show Key.

The Java Card applet on the card has to support those two com-
mands, while the samservCardService simply generates the commands
and sends them to the OCF CardTerminal using the member function
sendCommandAPDU(). A CardChannel must be obtained from the
inherited member functions allocateCardChannel(), getCardChannel(),
and releaseCardChannel().

The code below shows how a member function of a class that extends

Java COM

90 FEBRUARY 2001

“CardService” can send an APDU to a card via an
OCF driver.

public void SelectApplet() /* Select the

"algsapp" Javacard applet */

throws CardTerminalException

{

byte[] SelAid= { (byte)0x00, (byte)0xa4,

(byte)0x04, (byte)0x00, (byte)0x07,

(byte)0x61, (byte)0x6c, (byte)0x67,

(byte)0x73, (byte)0x61, (byte)0x70, (byte)0x70

};

CommandAPDU capdu = new CommandAPDU(SelAid,

12);

try {

allocateCardChannel();

rapdu = getCardChannel().sendCommandAPDU

(capdu);

} finally {

releaseCardChannel();

}

}

Step 4: Checking the signature with the pub-
lic key

Now that the message has been signed using the private key, it can
be verified by decrypting the signature with the public key. Before
doing this, it’s necessary to jump ahead and understand what was
done on the card. This is explained in detail in Step 1 of the Java Card
Applet found on the JDJ Web site. In the meantime Figure 3 shows
what happens as the message (or data) is sent to the Java Card and the
signature is generated.

The Java applet on the card automatically hashes
the message before encrypting it and returning the
signature.

Cipher rsa_ciph =

Cipher.getInstance("RSA/ECB/PKCS1Padding");

rsa_ciph.init(Cipher.DECRYPT_MODE, pair.getPub-

lic());

rsa_ciph.doFinal(sig_of_data, sig_off, sig_len,

de_sig);

The code above decrypts the signature, and the
result is the SHA-1 hash of the original data in the
byte array de_sig. Since we can’t “unhash” this to ver-
ify that it matches the original message, we can hash
the original data ourselves. If the SHA-1 hash of the
original data matches the decrypted hash returned
by the Java Card, we’ve verified that the public key is
the one associated with the private key. The code
below shows how to generate an SHA hash of the
original data. If the signature is correct, the hash in
de_sig and the recomputed hash should be equal.
The hash is either in the first 20 bytes of de_sig or
directly after a 15-byte SHA-1 identifier.

MessageDigest sha =

MessageDigest.getInstance("SHA");

sha.update(data);

byte[] hash = sha.digest()

Step 5: Building and running the Java workstation program using
the Sun JDK

The following files, available as part of the OCF installation, must be
in your Java classpath: base-core.jar, base-opt.jar, jce1_2-do.jar, and
jce.zip

When using the OCF-provided PC/SC driver, you also need
\OpenCard\OCF1.2\lib in the OS path to pick up the OCF pc/sc dlls,
and you must reference terminals-windows.jar and pcsc-wrapper.jar
in the Java classpath. (Naturally, you also need a functional PC/SC
installation.)

Assuming that CPATH contains all the relevant JARs and zips, the JDK
commands in the listing below will build the Java class file and combine
the CardService and its factory into a JAR file.

javac -classpath %CPATH% javaterm.java

cd samserv

javac -classpath %CPATH% samservCardService.java samservCardSer-

viceFactory.java

cd ..

jar cvf samserv.jar samserv\samservCardService.class samserv\sam-

servCardServiceFactory.class

The path environment variable includes C:\;\JDK1.2.2\BIN;C:\
OPENCARD\OCF1.2\LIB. The command java -cp %CPATH% javaterm
will then produce the output shown in Appendix B.

Java Card Applet
Now that the steps from the Java workstation side have been

explained, it’s time to take a look at what’s happening at the card level.

Step 1: Design of the Java Card 2.1 applet
The details of the Java Card 2.1 runtime environment are covered in

Sun’s Java Card 2.1.1 Runtime Environment (JCRE) Specification. Briefly
though, the algs class extends the applet and handles the input and out-
put of the APDU. After an APDU has arrived in the buffer the Java Card
environment calls the process (APDU apdu) function. The memberFIGURE 3 How the signature generation works

hash(data)
encrypt(private_key,

hashed_data)

applet

Java Card API

Java Card

"data"

"data"

"signature"

"signature"

‘‘

’’

With the
introduction of

the Java Card
it’s becoming
necessary for

smart card
developers to

know Java and
Java developers
to know smart

cards

Java COM

92 FEBRUARY 2001

variables of algs are held in persistent storage, while local variables use
the stack.

Under the constructor Algs(), the cryptographic member variables
are created with their defining parameters, such as key size, and the type
and hashing for the signature. Naturally, they have to be in agreement
with the parameters used on the terminal side.

The process() method has a switch that contains the essential cryp-
tographic manipulations of loading the private key and using it to
encrypt and sign data. In all cases we use the data from the incoming
command as it’s sent to the card.

Step 2: Building the Java Card applet with the Sun JDK, using a
.jar file from Motorola

The commands shown below are those needed to build a JAR file
from the algs.java file.

javac -g -classpath "\program files\M-Smart JADE\jcapi.jar"

algs.java

cd ..

jar cvf algs/algs.jar algs/algs.class

cd algs

To convert the JAR file into a CAP file, which is the file used to load the
applet into the card, use M-Smart Jade Workbench. A CAP file is specified
in Sun’s jcvmSpec.pdf, section 6.

Notice that the jcapi.jar (Java Card API) came from the installation
directory of the Motorola M-Smart Jade Workbench.

Step 3: Generating and loading the CAP file using the Motorola
M-Smart Jade Workbench

To build the .CAP, you start Jade, and select Card | Jupiter.
Note: You can’t run Jade on a Windows PC if PC/SC is locking the serial

port. The symptom is that Jupiter doesn’t appear below simulator on the
card menu, so you must disable PC/SC while Jade is running as follows:

WNT Control Panel | Services | Smart Card Resource Manager stop
Control Panel | Services | CHIPDRIVE SCARD Service stop

W98 Run msinfo32.exe, and choose System configuration utility from the tools menu.
In the Startup tab disable SCardSrv and TwkCardSvr then reboot.

Select Tools | Generate CAP File. Browse for your JAR file, click Parse,
then enter the AID for the applet and package. The first five bytes of the
package AID must be the same as the applet AID. The example applet uses
“algsapp” and “algsa” for the applet and package, respectively. (“ means
use the ascii characters; you could also enter 61 6C 67 73 61 70 70, if you
prefer.) Browse for your CAP file destination, entering the filename if it’s
the first time you’re generating the CAP file. Then click on Generate CAP.

If the card already has an old version of the applet, select Card |
Delete and remove the applet and then the package.

Then select Card | Load and Install, and browse for the CAP file.
Enter your heap size and wait a bit. (The example applet has a heap of
1500.)

Summary
The main purpose of this article was to demonstrate how to use a Java

Card smart card with Java. This was accomplished by giving a sample
solution using the Java Cards built-in RSA cryptography functionality to
generate an RSA signature. Obviously, you can do much more with a Java
Card, but hopefully you will have a starting point of information and
sources to get you started.

Future applications that integrate Java, smart cards, and cryptogra-
phy are up to you!

AUTHOR BIO
Andrew Webb is a staff engineer at Motorola World Wide Smart Card Division and holds a BS in applied
mathematics from Carnegie-Mellon University.

andrew.webb@motorola.com

JavaDevelopersJournal.com
www.javadevelopersjournal.com is

your source for industry events and
happenings. Check in every day for
up-to-the-minute news and develop-
ments, and be the first to know what’s
going on in the industry.

Participate in our daily Live Poll
and let your opinion be heard.

Java Buyer’s Guide
Click here to go to the most-read

Java resource on the Internet. Browse
our listings for information on applica-

tion servers, books, code protection,
consulting services, database tools,
education and training, testing tools,
and more.

Salary Survey
Participate in our annual job/salary

survey! We’d like to know the number of
Java employees in your organization,
the city and state you work in, what
your job function is, how many years
you’ve been in your field, and more.

The information you provide does-
n’t require any name or personal infor-
mation and thus remains 100% anony-
mous. Results will be posted on our
Web site and published in a future
issue of JDJ.

JDJ Readers’ Choice Awards
Vote for your favorite Java soft-

ware, books, and services in our
annual JDJ Readers’ Choice Awards,
January 10 through May 30, 2001.
Winners will be announced at
JavaOne 2001 and presented at the
International Conference for Java
Technology – Fall Conference.

Java Jobs
Java Developer’s Journal is proud

to offer our employment portal for IT
professionals. Through this site you
have direct access to the best compa-
nies in the nation. If you’re an informa-
tion technology professional and are
curious about the job market, demand
privacy, and don’t want to waste time,
you’ve found the right site!

Simply type in the keyword, job
title, and location and get instant
results. You can search by salary, com-
pany, or industry.

Need more help? Our experts can
assist you with retirement planning,
putting together a resume, immigra-
tion issues, and more.

What’s Online This Month...
February 2001

93FEBRUARY 2001

Java COM

Java COM

94 FEBRUARY 2001

Using charts makes complex data easi-
er to comprehend. Unfortunately the
decision to add charts to a Web site or

an application doesn’t necessarily make life
easier for the designers and programmers
responsible for displaying them. Depending
on the complexity of the data, developers
may encounter a seemingly endless series
of questions. What type of chart is needed?
Should the data be displayed horizontally
or vertically? 2D or 3D? What increments
should be used along the axis lines? What
happens if the data changes?

EspressChart from Quadbase Sys-
tems, Inc., is a set of tools to help devel-
opers design and implement a variety of
chart types. The primary tools that make
up EspressChart include Chart Server,
Chart Designer, Chart Viewer, and Chart
API.

Chart Server provides user authenti-
cation as well as local and remote file
access. Although Chart Server generally
runs on a Web server, it’s possible to run
it on a stand-alone machine.

Chart Designer is a 100% Pure Java,
interactive, front-end application that
guides developers through the process
of creating charts. Designers choose
from a list of common chart types,
then add customization – including
rotating the chart to view it from dif-
ferent angles. Once a chart has been
created, it can be exported in a variety
of formats. In addition to common
formats, such as .gif and .bmp, two
formats specific to EspressChart are
available. Charts exported as .cht
(Chart Designer format) files are
accessible to the Chart Viewer applet,
as are charts exported as .tpl (the tem-
plate format for Chart Designer). In
addition, .tpl files save chart attributes
and the data source, but not the actual
data. Whenever a .tpl file is loaded,
data for the chart is automatically
updated.

Chart Viewer is an applet that allows
users to view and manipulate charts
remotely.

Finally, Chart API is a set of 100%
Pure Java library functions that can work
in conjunction with Chart Server or in a
stand-alone mode to create and manipu-
late charts from within applets and appli-
cations. Chart API takes advantage of
high-performance algorithms for display-
ing 3D objects. In fact, it can reproduce all
the functionality of Chart Designer.

Creating a Chart
Suppose I want to produce a chart

tracking the salary of Alex Rodriguez, who
recently signed a 10-year, $252 million con-

tract to play shortstop for the Texas Rangers
baseball team.

Because Chart Designer requires Chart
Server to be running, the first step is to launch
Chart Server. I can accomplish this on my Win-
dows 95 machine by simply executing
server.bat. Several command line options are
available, including one to turn the Chart Serv-
er monitor on or off. The Chart Server monitor
displays information about the current status
of the server, such as the number of users cur-
rently logged in (see Figure 1). In addition, it
allows the administrator to change various set-
tings and fine tune the performance of the
server. For example, new to version 3 of
EspressChart is a data buffering capability in
which the administrator can control whether
data requested from a database is stored in a
buffer for faster access later or read from the
data source each time.

Once Chart Server is up and running, Chart
Designer can be launched as an applet by typ-
ing the proper URL into a browser or as an
application by executing designer.bat. After the
user has successfully logged on, five steps are
required to create a new chart.
1. Specify a data source (database or data file).
2. Select a chart type.
3. Select suitable chart options.
4. Modify the chart design interactively.
5. Export the chart in the desired format.

If the data for a chart resides in a database,
the Chart Wizard prompts you for the URL of
the database, the database driver, user name
and password, and a valid SQL statement to
retrieve the data. In the example below, the
data exists in a single data file called “Alex.txt”,
and I simply provide the name of the file when
prompted by the Chart Wizard.

String, boolean, decimal, decimal

Year, option, salary, deferred

"2001", false, 21, 5

"2002", false, 21, 4

"2003", false, 21, 3

"2004", false, 21, 3

"2005", false, 25, 4

"2006", false, 25, 4

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

AUTHOR BIO
Don Walker is cofounder and chief architect of Entice Software
Corporation. He has over 15 years of experience in software
development, working previously as a project lead at Simon &

Schuster’s Learning Technology Group.

Quadbase Systems, Inc.
2855 Kifer Road
Suite 203
Santa Clara, CA 95051
Web: www.quadbase.com
Phone: 408 982-0835
Fax: 408 982-0838

Test Environment:
OS:Windows 95
Processor: 233MHz Pentium II
Memory: 32MB

EspressChart
by Quadbase Systems, Inc.

don@enticesoftware.com

REVIEWED BY DON WALKER

FIGURE 1 Chart Server monitor

95FEBRUARY 2001

Java COM

"2007", false, 27, 4

"2008", true, 27, 3

"2009", true, 27, 3

"2010", true, 27, 3

In data files, the first row specifies the data
types. The EspressChart documentation lists
20 data-type keywords ranging from “boolean”
and “int” to “date” and “timestamp”. The sec-
ond row contains the field names, and the
remaining rows contain the records.

Once the data is ready it’s time to decide
precisely how it should be displayed. The
Chart Wizard offers a choice of 17 2D and 13
3D chart types (see Figure 2). If the data is
incomplete or incompatible with the chosen
chart type, a dialog box appears with an expla-
nation of the problem. The available chart
types include:
• Column
• XY(Z) scatter
• Stack column
• Pie
• Stack area
• High low close open (HLCO)
• Surface chart (3D only)
• Overlay chart (2D only)
• Radar chart (2D only)

With the data source identified and the
chart type selected, the next step is to precisely
map the data from the data source to the chart.
For example, the data file describing Alex
Rodriguez’s contract includes the salary total

for each year. Also included are whether the
season is an option year and the amount of
deferred money to be paid at a later date. This
is valuable information, but we don’t want to
necessarily include it in this particular chart.
Fortunately, through the Select Data Mapping
dialog box, we can match a specific axis in our
chart directly to a column of data in a data file
or database.

Final Customization
At this point, designers concerned about

the appearance of their charts can take advan-
tage of the flexibility of Chart Designer to mod-

ify the look of the chart, as well as add some
functionality (see Figure 3).

A background image can be chosen for the
chart and a title added. In fact, text can be
included anywhere on the chart. Certain vari-
ables can also be included in the text for run
time substitution. For example, these variables
can represent the time, date, or name of a col-
umn of data mapped to a particular axis.

Customization isn’t limited to adding items
to the chart. Virtually any object can be
removed. Titles, axis labels, even the axes
themselves are not immune.

Further customization is possible for the
items that remain. Color and font can be

FIGURE 2 Choosing from standard chart types FIGURE 3 Chart Designer

changed. Objects can be moved. The limits of the axes can be changed.
Even the thickness of the axis lines can be modified.

Finally, the entire chart can be resized and, in the case of 3D charts,
rotated using the navigation panel at the bottom of the screen.

Not all changes made within Chart Designer are cosmetic. Signifi-
cant functionality can also be added. Hyperlinks can be set up to
allow the user to click on a data point and immediately branch to
another chart or HTML page. For complex charts, the Drill-Down
Wizard helps designers manage links between large numbers of
charts by creating drill-down charts at runtime. Charts that contain
frequently changing data can be configured to regularly check the
database and display any changes.

When the designer decides the chart is complete, several nice
features are available. When saving a chart, checkboxes exist for
creating HTML and XML files. The HTML file contains code to
display the saved chart, and the XML file contains the properties
of the chart based on the EspressChartAttributes.dtd file. It’s also
possible to export the data of the chart to an XML file based on
the EspressChartData.dtd file. This is particularly useful for
charts based on data from multiple sources, since it allows the
data to be stored in a single location.

Chart API
It’s no exaggeration that Chart API can produce a chart with

a single line of code. In this case, however, I needed two lines
to display the salary chart as part of an applet. The call to the
class method “setChartServerUsed” must be made prior to
creating the chart object if, as in this case, the server isn’t
being used.

import quadbase.ChartAPI.*;

import java.awt.*;

import java.applet.*;

public class Alex extends Applet {

public void init() {

QbChart.setChartServerUsed(false);

setLayout(new BorderLayout());

add("Center",new QbChart(this,"Salary.cht"));

}

Because the salary chart is in 3D, the navigation panel is included in
the applet, allowing users to rotate the chart to view it from various
angles within the applet without the need for me to write any additional
code.

Since Chart API can re-create all the functionality of Chart Designer,
I can use it to further modify the chart by changing the title, for example.
I can also use it to export the chart as a static image. In this way devel-
opers can use JavaServer Pages or servlets to generate charts on the serv-
er side before displaying a Web page on the static image and the corre-
sponding map file (if any) dynamically.

Summary
The Chart Designer, despite its power and flexibility, is remarkably

intuitive. When I decided I didn’t like the background image, I double-
clicked on it and was immediately presented with a list of potential
replacements. Moving objects, such as the legend, simply involves click-
ing and dragging.

Still, documentation is important, and the EspressChart documenta-
tion is outstanding. The chapter on Chart API has generous portions of
sample code, and the chapter on Chart Designer contains detailed
descriptions of all of the standard chart types, including guidance on
when to use a particular type of chart.

More information, plus the opportunity to download an evaluation
copy of EspressChart, is available at www.quadbase.com.

WebLogic
Collaborate 1.0
BEA

WebLogic Collaborate is a layered
product that builds on BEA’s WebLogic
application server product. While it’s pos-
sible to build
your own B2B
solution from
the ground
up, Collabo-
rate reduces your time-to-market by offer-
ing a set of prebuilt components. It lever-
ages existing Web technology standards as
well as burgeoning commerce standards.

Many B2B sites are built around the
concept of an exchange. Collaborate
implements the exchange concept through
something they call Collaboration spaces,
or “C-Space”. Because each C-Space can
support different trading protocols, a single
C-Hub can handle both RosettaNet and EDI.

Prepackaged B2B solutions are likely to
offer more out-of-the-box functionality
than Collaborate. However, Collaborate’s
advantage may lie in its integration with the
Application Server.

Contact: www.bea.com

Internet
File System
Oracle

Oracle has released an updated version of
their Internet File System product with Ora-
cle8i Release 3.0 and the Oracle 9iAS appli-
cation server. IFS replaces the native file sys-
tem on your server with the advanced Oracle

database. End-user clients
work with familiar interfaces to
see and edit database-held
documents and media as files

and folders. The system supports a variety of
common access protocols that give clients
the ability to store, manage, and search doc-
uments, presentations, multimedia, Web
pages, and XML files across a variety of
devices. IFS provides a secure layer in which
to store all of your data, both structured and
unstructured. However, IFS is more than just
a replacement for your file system – it’s actu-
ally a complete content management system
in its own right.

One of the keys to IFS is its extensibility.
This latest release of IFS includes an
improved Java-based API, and this is one of
its strengths.

Contact: www.oracle.com

Web BusinessManager Suite 6.0

SpaceWorks
BusinessManager Suite 6.0 is designed to

help companies automate all their B2B activi-
ties over the Web. It incorporates the J2EE
architecture and offers support for EJBs, JSPs,
Servlets, JNDI, JMS, RMI, and JTS. Business-

Manager is
offered as a
comprehensive

prebuilt product set – targeting those organiza-
tions that want to buy an off-the-shelf solution.

The suite spot for the product is its support
for complex order management that can be
implemented on a module-by-module basis:
order management, marketing programs, cus-
tomer service, billing, reporting, and B2B inte-
gration. You can customize the product using
J2EE technologies, but most of the customiza-
tion will be at the business-processing level.
Although BusinessManager is written with
J2EE technology, it’s not an application devel-
opment environment. You’ll have to spend
some time integrating BusinessManager into
your back-office applications. It’s clearly a
solution for the high end of the market.

Contact: www.spaceworks.com

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

Java COM

FEBRUARY 200196

Java COM

98 FEBRUARY 2001

Metrowerks and Partners to
Deliver Wireless Solution
(Santa Clara, CA) – Metrowerks is
teaming up with technology part-
ners to provide an out-of-the-
box solution to help developers
create enterprise-ready applica-
tions for wireless devices. The
solution, which Metrowerks
plans to make available in the
first quarter of 2001, will com-
bine the familiar CodeWarrior
IDE and toolset with PointBase
Inc.’s database, Eliad Technolo-
gies’ iSmartGrid, and NewMon-
ics’ PERC virtual machine.

www.pointbase.com
www.eliad.com
www.newmonics.com
www.metrowerks.com

Silverstream Software Achieves
Full J2EE Certification
(Billerica, MA) – SilverStream
Software, Inc., has successfully
completed Sun Microsystems’
J2EE certification test suite
assuring
cross-platform
compatibility
between J2EE
specifica-
tion–certified vendors. To reach
compatibility, SilverStream
passed more than 5,000 rigorous
compliance tests.
www.silverstream.com

Integration Enhances Open
Text’s Collaborative Solutions
(Waterloo, ON) – Open Text Cor-
poration and Cimmetry Systems
announced that AutoVue and
Panoramic! for Java now integrate
with Livelink, providing Livelink
customers with enhanced tools
for their knowledge management
and enterprise resource planning
solutions.

This integration enables users
to securely access drawings and
documents from any Web brows-
er, add graphical or textual infor-
mation to documents and draw-
ings independent of the author-
ing application without altering
the original, and create a work-

flow for making revisions to engi-
neering drawings and business
documents.
www.cimmetry.com
www.opentext.com

O’Reilly Releases
Java Message Service
(Sebastopol, CA) – Any developer
or system architect who has a
need to connect applications
will benefit from the informa-
tion in Java Message Service by

David Chap-
pell and
Richard Mon-
son-Haefel.
This book
demonstrates
how to build
applications
using the

point-to-point and publish-and-
subscribe models, how to use
features such as transactions
and durable subscriptions, and
how to use messaging within
EJBs. It also introduces a new
EJB type, the MessageDriven-
Bean, that’s part of EJB 2.0, and
discusses integration of messag-
ing into J2EE.
www.oreilly.com/catalog/javmesser/

NexPrise Selects Cimmetry
for Visualization Capabilities
(Santa Clara, CA) – Cimmetry
Systems Inc.’s online visualiza-
tion tool, AutoVue for Java, is an
additional offering to the latest
release of NexPrise ipTeam, ver-
sion 4.0. The technology combi-
nation improves and eases com-
munications between virtual
team members connected across
organizational and geographical
boundaries.
www.cimmetry.com
www.nexprise.com

IBM developerWorks Teams
with Flashline.com
(Cleveland, OH) – Flashline.com
Inc.’s products and services for
component-based development
have become available through

IBM developerWorks, a Web site
that provides developers with
free content on open standards-
based development and cross-
platform technologies. The
cobranded site, Components
Marketplace, is the result of an
agreement made last June
between Flashline and IBM
developerWorks.
www.ibm.com/developerWorks

(Montvale, NJ) – Veteran magazine industry executive
Agnes Vanek has joined SYS-CON Media, Inc., as cor-
porate vice president of circulation.

“We are delighted to have Agnes Vanek on board,”
said Fuat Kircaali, founder and CEO of SYS-
CON Media. “Agnes will have a critical role
in the launch of our most recent and largest
title, Wireless Business & Technology. She
will redefine an aggressive circulation strat-
egy for our existing titles including Java
Developer’s Journal and XML-Journal and
help us successfully launch a number of
new world-class titles for our technology
readers around the globe.”

“I am very excited to join the SYS-CON team
and look forward to being part of the group that
has created the most successful technology maga-
zines in recent years,” said Vanek. “Wireless Busi-

ness & Technology aims to be
the world’s leading publica-
tion serving the wireless
industry and Internet tech-

nology developers utilizing new and
emerging wireless technologies.”

Vanek started her high-tech career
in 1983 at Ziff-Davis as senior circula-
tion manager for PC Week and MacWeek.
Her 18-year professional accomplish-
ments include managing Communica-
tionsWeek and CommunicationsWeek
International at CMP. During Vanek’s

eight-year tenure at IDG, her circulation strategy
played a key role in making Federal Computing
Week the lead publication in the government IT
market. In 1996 Vanek successfully launched
FCW's sister publication, civic.com.

SYS-CON Names Agnes Vanek
Corporate VP of Circulation

(Fremont, CA) – Insignia Solutions
and ProSyst USA have partnered
to provide ProSyst’s customers
with Insignia’s accelerated Java-

compatible
technology.
Insignia’s
Jeode plat-

form will integrate with ProSyst’s
mBedded Server software to give

developers the technology they
need to deploy embedded Java
applications that are fast, small,
and functional.
www.prosyst.com
www.insignia.com

Insignia Solutions Teams
with ProSyst USA

99FEBRUARY 2001

Java COM

Sitraka Establishes Regional
Office in San Francisco
(Toronto, ON) – Sitraka Software
(formerly KL Group) has
launched its West Coast office in
San Francisco, California. The
initiative serves as the first step

in growing Sitraka’s Silicon Valley
presence and in enabling it to
better serve the needs of its glob-
al customers headquartered in
California.

The California office will be
headed by Michael Murray, west-
ern regional manager, who will
be responsible for sales manage-
ment and new business develop-
ment activities.
www.sitraka.com

Sheridan, ProtoView Merge to
Form Infragistics
(Cranbury, NJ / Melville, NY) –
Sheridan Software Systems, Inc.,

and ProtoView Development
Corporation have announced
their merger. The new company,
Infragistics, Inc., will be head-
quartered in Cranbury, New Jer-
sey.

Infragistics has merged COM
products from both the Sheridan
and ProtoView product lines to
create the Infragistics UltraSuite.

Infragistics will continue to sup-
port the other COM products
from the two former companies,
and publish and move forward
with InterAct, PowerChart, the
JSuite, and the JFC Suite, all for-
merly published under the Pro-
toView label.
www.infragistics.com

Compoze Releases Harmony
Component Suite 1.1
(Philadelphia, PA) – Compoze
Software, Inc., announces Har-
mony Component Suite 1.1, a
collection of EJB components

offering support for multiple
application servers, including

Allaire JRun, BEA WebLogic, the
J2EE Reference Implementation,
and the Orion Application Server.
Database support includes Ora-
cle, Microsoft SQL Server, Sybase,
and Cloudscape.
www.compoze.com

(Stamford, CT) – B2B ITS Corp.
has released FIXantenna Engine
– the first open source FIX
Engine offered under an
Apache-style license.

FIXantenna En-
gine’s release coincides with the
launch of FIXantenna, a suite of
FIX protocol-related products for
the financial services in-
dustry. In addition to the FIX
Engine, FIXantenna includes
additional external CORBA ser-
vices and a FIX Message Browser.

FIXantenna Engine can be

downloaded at
http://fix.btobits.com.

B2B ITS Corp. Releases
.FIXantenna Engine

As Open Source

Java COM

FEBRUARY

This dramatically changing, high-
tech landscape is causing fear and con-
fusion in Java engineers. What sensible,
intelligent person wouldn’t be shaken by
the current state of affairs in the dot-
com world?

As a Java engineer, what are your
options? What does it all mean? And
what should your next step be?

For example, on the consulting front
over the past few years, many skilled
engineers took a cut in their usual con-
tracting pay to join a dot-com in
exchange for huge stock options. They
took the risk in exchange for a shot at
huge rewards – and the chance to be in
on the ground floor of the next eBay.

Now many of those start-ups have
crashed and burned, leaving engineers
with thousands of worthless stock
options – or no job at all. From their per-
spective, they were taken for a ride.

What’s the solution now? Some engi-
neers who were burned in the dot-com
crash feel it would be best to join a huge
corporation, such as Sun, HP, or Cisco,
for the sense of security working for a
large company can provide.

Maybe I won’t make as much money
as I did contracting or get as many stock
options as I did at that dot-com; at least
I’ll have an inner feeling of security
knowing the company won’t go belly-up
at a moment’s notice.

But ultimately no position in high tech
is totally secure. The days of getting a job
at General Motors and knowing that you’d
work there for 30 years are long gone.

Even at large companies major pro-
jects get scrapped, groups get reorga-
nized or eliminated, and the door to job
security keeps revolving.

Those familiar with the Web genera-
tion of technology know that technology
changes every 18 months, ways of doing
business change, and your skill sets can
quickly become obsolete.

Before totally discounting opportuni-
ties at smaller, entrepreneurial compa-
nies, look closer at what can be learned
from the current dot-com meltdown:
• The Internet isn’t going away.
• Companies that support and do busi-

ness on the Internet are here to stay.
• B2Bs and infrastructure companies

are faring better than B2C companies,
which became overvalued based on
market share versus potential for real
revenue.

• Venture capitalists that once invested
like mad in brand-new start-ups are now
focusing on third rounds of funding in
companies that are more secure deals.

• Venture capital funds are at their
highest levels, and VCs still have plen-
ty of money to invest. However, we’re
starting to see larger amounts of VC
investments going into a smaller
number of more select companies.

• Pre-IPOs in their post-second round
of funding with solid business models
and management teams are still a
good bet.

The illusion that every high-tech
company is failing is just that: an illu-

sion. The percentage of new companies
that have failed is the same as it is in any
given year. The difference is in the huge
amount of new companies that went
into business, which resulted in a higher
amount of total companies that failed.

But what’s the bottom-line result of
all this for Java engineers? Rates and
salaries are likely to go down from where
they were in the crazy dot-com “boom
days,” but should stabilize as the market
gets healthier.
• Senior engineers will always be in

demand and aren’t likely to see signif-
icant changes.

• Intermediate engineers may see
some changes in their rates, and it
may take about two weeks for them
to find a job (as opposed to five
days).

• Junior engineers are most likely to be
laid off first and may see pay rates go
down (after all, there are a lot more
junior engineers). This is an ideal time
to enhance your skill sets with recent
technologies that will increase your
marketability.

Across the board, sensible Java engi-
neers will consider being flexible about
their current rates or salaries in
exchange for long-term opportunities in
a market that’s headed for increasing
stability.

To B2B or Not To B2B –
and Other Questions

Flexibility is the key

AUTHOR BIOS
Bill Baloglu is a principal

at Object Focus
(www.ObjectFocus.com),

a Java staffing firm in
Silicon Valley. Prior to

ObjectFocus, Bill Baloglu
was a software engineer

for 16 years. He has
extensive OO experience

and has held software
development and senior
technical management

positions at several Silicon
Valley firms.

Billy Palmieri is a
seasoned staffing industry
executive and a principal

of ObjectFocus. Prior to
ObjectFocus, he was at

Renaissance Worldwide, a
multimillion dollar, global
IT consulting firm, where

he held several senior
management positions in

the firm’s Silicon Valley
operations.

billb@objectfocus.com

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI D

ot-coms are crashing and burning
all around us. Yesterday’s “hot”
companies are seeing their stock
values plummet, triggering massive
layoffs. Even “sure bet” companies
seem to be going out of business
everywhere you look.

billp@objectfocus.com

Career Opportunities

Java COM

Call Ron Perretti Today! 201-802-3028

Java COM

IMHO: Blueprinting Java

AUTHOR BIO
Ajit Sagar is the founding editor and editor-in-chief of XML-Journal. A senior solutions architect with VerticalNet Solutions based in San Francisco,
he’s well versed in Java,Web, and XML technologies.

ajit @sys-con.com

WRITTEN BY AJIT SAGAR

L
ast year Sun came out with a new set of design guide-
lines for building enterprise applications using enter-
prise Java APIs. These APIs are available as a set of doc-
uments called the J2EE Blueprints. They include archi-

tectural design guidelines for developing enterprise appli-
cations using the Java 2, Enterprise Edition APIs.

The Silver Bullet
The primary benefit of the Blueprints is that after five

years and several releases of Java platform products and
APIs, there’s finally a comprehensive story of how all these
technologies offered by Java can plug and play together in
enterprise-level applications. Using the Blueprints as
guidelines also helps architects and developers make
choices between alternative technologies and products,
based on the constraints of their business and operating
environments.

The J2EE Blueprints address enterprise application
development using the design pattern MVC (Model-View-
Controller) to build the underlying framework. Designing
Enterprise Applications with the Java 2 Platform, Enter-
prise Edition (Addison-Wesley) covers the Blueprints in
detail. A PDF of the Blueprints as well as a sample “Pet
Store” application can be downloaded from Sun’s Web
site, http://java. sun.com/j2ee/download.html. The sam-
ple illustrates how the Blueprints can be applied in a dis-
tributed business application.

The Whole Enchilada?
This is great stuff. You now have a single source to get

all the information you need to develop enterprise-level,
distributed, transactional applications using only Java
technologies. Select your application server, download the
appropriate APIs, and off you go. If you can, use Java APIs
to create all the building blocks in your application. If you
can’t, there are well-defined integration points to connect
to the outside world.

The real questions you should ask yourself are how
much of this do you want to build in-house, and how
much do you want to buy off the shelf? If you were devel-
oping the Pet Store application in the real world, you could

probably build everything using your development
resources. However, if you’re dealing with applications
that span multiple business scenarios, chances are you’ll
soon run into issues such as resource allocation and main-
tenance if you decide to build all the pieces yourself. Of
course if you’re in the business of building frameworks
and application servers, it’s a great idea to do it all yourself.
However, that will be your main product, not the business
applications you build on top of such frameworks.

Let’s look at the presentation layer. You can use a com-
bination of JSP, servlets, and XML to create your presenta-
tion layer. JSP can be used to create the presentation tem-
plates and guide the flow of pages by designing the layout
manager for your site. Servlets can send the appropriate
content into syndicated columns. And XML serves as a
great format for exchanging data with the outside world.
The combination of these technologies can be used to cre-
ate a presentation layer for your application.

What happens when you want this framework to be
generic so it can be applied across a variety of business
scenarios? How much effort will be required to further
abstract your design to provide templates that can be con-
figured for different applications? This is where you’ll start
running into maintenance and resource problems.

If It Sounds Too Good To Be True…
Don’t get me wrong. It’s not that the Blueprints mislead

the development community into believing that every-
thing should be done in-house. It’s just that they can be
interpreted in different ways. Typically, if you were work-
ing on applications that span several business scenarios
and applications, you would depend on technology ven-
dors such as application server providers to implement
the frameworks that make it all possible. And dare I say it,
you would also look outside the Java world for some of
your needs. A large part of the existing presentation and
personalization products in the market are built on Web
scripting technologies that complement Java environ-
ments. For example, companies such as Allaire, BroadVi-
sion, Vignette, and ATG provide the frameworks required
to build such applications. That’s the very reason they’re in
business.

JANUARY 2001110

G U E S T E D I T O R I A L

